三角形教学设计
作为一名教职工,常常需要准备教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。你知道什么样的教学设计才能切实有效地帮助到我们吗?下面是小编整理的三角形教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
三角形教学设计1
教学目标:
1.使学生认识射线和直角、锐角、钝角、平角、周角,会用量角器量角的度数,会按指定的度数量角。
2.使学生初步认识垂线和平行线,会用三角板和直尺画垂线和平行线。
3.使学生掌握三角形、平行四边形和梯形的性质和特征,知道三角形按角进行分类的情况,初步认识轴对称图形。
4.学会计算三角形、平行四边形和梯形的面积。
5、培养学生的空间观念,发展思维能力。
学生认识基础:
1.学生已直观认识线线段、直线,可以此引出射线。
2.学生已认识角的.形状,并知道角的各部分名称,并对直角有一个较深入的认识。
教学注意点:
1.重在树立学生的空间观念。
2.本单元内容步步紧扣,并为以后学习面积计算公式
三角形教学设计2
【教案背景】
1、面向学生:初二
2、课时:
3、学科:数学
4、学生准备:提前预习本节课的内容,尺规和练习本。
【教材分析】
1、教材的地位和作用:
本节课是初二数学下册第十八章18.1.2平行四边形判定中的第三课时三角形中位线的内容。三角形中位线既是前面已学过的平行线、全等三角形、平行四边形性质等知识内容的应用和深化,同时为进一步学习梯形、任意四边形的中位线打下基础,尤其是在判定两直线平行和论证线段倍分关系时常常用到。在三角形中位线定理的证明及应用中,处处渗透了归纳、类比、转化等化归思想,它是数学解题的重要思想方法,对拓展学生的思维有着积极的意义。
2、教学目标:
知识目标:
(1)理解三角形中位线的概念
(2)会证明三角形的中位线定理
(3)能应用三角形中位线定理解决相关的问题;
过程与方法目标:
进一步经历“探索—发现—猜想—证明”的过程,发展推理论证的能力。体会合情推理与演绎推理在获得结论的过程中发挥的作用。
情感目标
画一个任意三角形的中位线,用猜测和度量判断中位线与第三边的位置和数量关系,进一步培养学生合作、交流的能力和团队精神,培养学生实事求是、善于观察、勇于探索、严密细致的科学态度。
3、教学重难点:
重点:理解并应用三角形中位线定理。
难点:三角形中位线定理的证明和运用。
【教学方法】
学生在前面的数学学习中具有了一定的合作学习的经验,为了让学生进一步经历、猜测、证明的过程,我采取:启发式教学,在课堂教学。
【教学过程】
(一)回顾三角形中位线:
三角形一个顶点和对边中点连结的线段
情感分析:让学生首先通过原有知识三角形中线【端点特征】来引入三角形中位线更加好理解。
(二)概念提取:像(EF、FD、DE)的线段的端点有什么特点?
情感分析:通过问题,让学生去发现中位线端点的特点,加深对中位线定义的提取和理解。
(三)引出三角形的中位线定义:
连接三角形两边中点的线段叫做中位线。
情感分析:直接引出定义,让学生更容易去理解中位线的含义并且对端点特征的理解。快而简单且易懂。
(四)概念对比记忆:
(1)相同之处——都和边的中点有关;
(2)不同之处:三角形中位线:中点连线;三角形中线:中点与端点(顶点)连线
情感分析:通过对比记忆,加深两者的区别与联系,对中位线的理解进一步提升。
(五)探究中位线的性质:
一般的三角形的中位线(DE)与第三边(BC)存在哪些关系?
问题:①DE与BC存在怎么样的位置和数量关系?
【作图观察并猜想】
②结合图形,请找出已知部分?要求证部分?
情感分析:对定义的理解后,方便对中位线性质的一个探究,在探究过程中,让学生通过画任意三角形的一条中位线,并且通过学习工具(量角器、三角板、刻度尺和圆规),通过量同位角和三角板的推移来观察猜测中位线与第三边是平行的,再来通过刻度尺测量是它的二分之一。由于方法的局限性(误差),所以探究用数学客观的逻辑推理中位线的性质。而且通过命题来找出已知和求证部分也是学生必须掌握的重难点,通过这里也可以让学生再次巩固提升。
(六)证明中位线与第三边的关系:
已知:在△ABC中,D、E分别是AB和AC中点
证明:
方法一:证明:延长DE到F,使EF=DE,连结CF.
方法二:证明:如图,延长DE至F,使EF=DE,连接CD、AF、CF
情感分析:通过证明的方法,引导学生做辅助线时候的逻辑推理,多问学生为什么会想到这样去做辅助线的。倍长线段是怎么想到的?为什么会想到连接CF?为什么会想到证明四边形?引发学生思考。
(七)归纳:
三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半。
用符号语言表示:∵DE是△ABC的中位线
∴
位置关系且数量关系
情感分析:通过刚刚的证明引导学生最后归纳出今天新课的重点内容三角形中位线的性质,对数学符号语言的书写格式进行板书,让学生更加理解和学会书写格式要求。
(八)练习巩固:
1、在△ABC中,E,D,F分别是AB,BC,CA的中点,AB=6,AC=4,BC=5,则△EDF的周长是?
情感分析:通过简单的.运用,能够让学生从简单的基础知识对中位线性质的掌握,基本全班学生都能从中掌握。
变式1:在△ABC中,E,D,F分别是AB,BC,CA的中点,AB=6,AC=4,则四边形AEDF的周长是?
情感分析:通过变式1让学生在原来题型的变化,掌握异题同解的思想方法,促进学生对数学产生兴趣。
2、如图,在△ABC中,中线BE,CD交于点O、F、G分别是OB、OC的中点
求证:四边形DFGE是平行四边形
情感分析:证明平行四边形的时候往往要用三角形去解决,所以引导学生用平行四边形判定的时候一定要主要平行且相等,要学会在哪个三角形找出相应的中位线来进行运用。
(九)巩固提高:
3、已知:四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.
求证:四边形EFGH是平行四边形.
辅助线:当有中位线三角形不完整时则需补完整三角形
情感分析:中点四边形主要归类为怎么去做辅助线,引导学生在折线段中的中点,找到相应的三角形中位线,主要是攻克三角形中位线的做法。
【动点问题】
4、如图:长方形ABCD中R、P分别是DC、BC边上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,线段EF长()
A.逐渐增大
B.逐渐变小
C.不变
D.先增大后变少
情感分析:涉及到动点问题
首先要教会学生要学会找出
哪些是定点,哪些是动点的问题,才能解决相应的变化问题【通过动画来演示后再进行证明讲解,让学生有一个直观的认识后,再用客观推理论证,培养严密的逻辑思维推理能力】。
5、如图,点E、F、G、H分别是线段AB、BC、CD、AD的中点,求证四边形EFGH是平行四边形
情感分析:学会做辅助线,引导学生构成完整的三角形中位线,直接运用定理。
6、已经△ABC是锐角三角形,分别以AB、AC为边向外侧作两个等边△ABM和△CAN,D、E、F分别是MB、BC、CN的中点,连结DE,FE
求证:DE=EF
情感分析:构成完整的三角形中位线后,要证明线段相等,则需要证明三角形的全等,找到相应的判定根据已知的条件,回顾全等三角形的证明。
7、已知:在ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G。
求证:GF=GC.
证明:取BE的中点M,连接FM、CM
辅助线:已知中点与选取邻边中点的连线,形成中位线。
情感分析:通过前面例题的对比,很多学生会觉得连接两点就可以构成三角形的中位线,从而产生惯性思维,导致这题目解答不出,所以这方面可以通过这题进行归类辅助线的做法,已知中点与选取邻边中点的连线,形成中位线。
(十)总结:
三角形的中位线定义:连接三角形两边中点的线段叫做三角形的中位线
三角形的中位线定理
【用途】:三角形的中位线平行于三角形的第三边,且等于第三边的一半
教学反思:
本节课采用“问题—探究—发现—应用”的启发性教学模式,把大部分时间交给了学生去思考探究,让学生画出任意三角形的中位线去探究与第三边的关系,从而让学生动手动脑思考。而教师不是一位旁观者,要积极的作为引导者、合作者,组织者。整节课教师注意提高学生的逻辑证明能力,强调直观与抽象结合,以及逻辑思维推理能力的训练,让学生经历了数学的快乐之旅。
三角形教学设计3
一、教学目标
(一)知识与技能
让学生经历探索三角形面积计算公式的过程,掌握三角形的面积计算方法,能解决相应的实际问题。
(二)过程与方法
通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。
(三)情感态度和价值观
让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
二、教学重难点
教学重点:探索并掌握三角形面积计算公式。
教学难点:理解三角形面积计算公式的推导过程,体会转化的思想。
三、教学准备
多媒体课件,学具袋(每小组各有两个完全一样的直角三角形、锐角三角形、钝角三角形),一条红领巾。
四、教学过程
(一)复习铺垫,激趣引新
1.复习旧知。
(1)计算下面各图形的面积。(PPT课件演示)
(2)创设情境。
同学们,请大家看看自己胸前的红领巾,它是什么形状?如果要裁剪一条红领巾,你知道要用多大的红布吗?求所需红布的大小就是求这个三角形的什么?
2.回顾引新。
(1)回顾:还记得平行四边形的面积计算公式吗?它是怎样推导出来的?
(2)引新:如果知道了三角形的面积计算公式,就能直接求出裁剪红领巾所需红布的大小了。今天这节课,我们就来研究三角形的面积。(板书课题:三角形的面积)
(二)主动探索,推导公式
1.操作转化。
(1)提出问题:既然平行四边形能转化成长方形推导出面积计算公式,那三角形能不能也像这样,通过转化推导出计算面积的公式呢?
(2)请同学们拿出准备的三角形,仿照我们推导平行四边形面积的方法,试着拼一拼,看能不能推导出三角形的面积公式。动手前,注意老师提出的这几个问题:
你选择两个怎样的三角形拼图?能拼出什么图形?拼出的图形的面积你会算吗?拼出的图形与原来的三角形有什么联系?(屏幕出示)
学生分组操作,教师巡视指导。
(3)学生展示汇报。
预设拼法一:用两个完全一样的锐角三角形拼成一个平行四边形。
预设拼法二:用两个完全一样的直角三角形拼成一个长方形或平行四边形(以长方形为例)。
预设拼法三:用两个完全一样的钝角三角形拼成一个平行四边形(以其中一种情况为例)。
(4)想一想:你们拼的都不一样,但是,我们可以发现,只要是两个完全一样的三角形,一定能拼成什么图形?
学生观察,发现:有的用两个完全一样的锐角三角形拼成了一个平行四边形,有的用两个完全一样的直角三角形拼成了一个长方形或平行四边形,还有的用两个完全一样的钝角三角形也拼成了一个平行四边形。虽然选取的三角形不一样,拼出的结果也不一样,但是,只要用两个完全一样的三角形就能拼成一个平行四边形。
2.观察思考。
(1)观察拼成的平行四边形和原来的三角形,你发现了什么?
(2)学生独立思考后汇报:三角形的底和平行四边形的底相等,三角形的高和平行四边形的高相等,三角形的面积是平行四边形面积的一半。
3.概括公式。
(1)你能自己写出三角形的面积计算公式吗?(PPT课件演示)
(2)总结公式。
①板书公式:三角形的面积=底×高÷2。
②用字母表示三角形面积计算公式。(PPT课件演示)
(3)回顾与小结。
①我们已经知道三角形的面积等于底乘高除以2,回顾一下,它是怎样推导出来的.?
②教师小结:当我们利用一个三角形无法将它转化成已学过图形的时候,我们选取了两个完全一样的三角形进行拼摆。不论是两个完全一样的锐角三角形、直角三角形还是钝角三角形,最后都能拼成一个平行四边形。通过观察思考发现,原三角形的底与拼成的平行四边形的底相等,原三角形的高与拼成的平行四边形的高相等,原三角形的面积是拼成的平行四边形的面积的一半。今天的学习过程中,同学们依然采取把未知的三角形的面积转化成已知的平行四边形的面积来研究的方法,非常好!在今后的学习中,如果再碰到类似问题,希望能继续用这种方法使问题迎刃而解。
4.除了刚才我们用的三角形面积公式推导方法外,请同学们再用剪拼的方法进行推导。
(1)小组讨论:怎样剪拼可以推导出三角形的面积公式?
(2)交流汇报(请学生展示剪拼过程)
平行四边形的面积=底×高
↓↓
(三角形的面积)(三角形的底)(三角形高的一半)
三角形的面积=底×高÷2
(三)巩固运用,解决问题
1.请同学们比较一下,两个不一样的三角形能不能拼成一个平行四边形?为什么?
2.讨论:谁说的对
叔叔:两个三角形能拼成一个平行四边形
小明:三角形的面积是平行四边形面积的一半
小玲:两个面积相等的三角形一定能拼成一个平行四边形
小红:两个完全一样的三角形能拼成一个平行四边形
3.填空
用两个完全一样的三角形可以拼成一个(),平行四边形的高等于()的高,平行四边形的底等于三角形的()。三角形的面积等于拼成的平行四边形面积的(),所以三角形的面积就等于()×()÷(),用字母表示是()
三角形教学设计4
题目:三角形的特性
时间:xxxx年4月20日
课时:1课时
来源:教科书第59页至61页,练习十五第1、2、3题
课型:图形与几何
授课对象:四年级学生
课标分析:
1、课标要求:联系生活实际,通过动手画、拼摆、设计等活动,使学生进一步感受三角形的特征及三角形与四边形的联系,感受数学的转化思想,感受数学与生活的联系,学会欣赏数学美。
2、使学生在探索图形的特征、图形的变换以及图形的设计活动中进一步发展空间观念,提高观察能力和动手操作能力。
教材分析:
1、《三角形的特性》是人教版小学数学四年级下册第五单元的内容。
2、三角形是平面图形中最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,并借助三角形来推导出有关的性质,而三角形的稳定性在实践中有着广泛的应用。因此把握好这部分内容的教学不仅可以从形的方面加深学生对周围事物的理解,发展学生的空间观念,而且可以在动手操作、探索实验和联系生活应用数学方面拓展学生的知识面,发展学生的思维能力和解决实际问题的能力,同时也为以后学习图形的面积计算打下基础。
学情分析:
在日常生活中学生经常接触到三角形,对三角形有一定的感性认识,而且本节课是在学生已经学习了线段、角、直观认识了三角形的基础上进行教学的,所以本节课是三角形认识的第二阶段。这一阶段的学生已经积累了一些有关“空间与图形”的知识和经验,形成了一定程度的空间感,具备了一定的抽象思维能力。但是,几何知识就是初步的几何知识对于小学生来说都是很抽象的,要解决数学的抽象性与小学生思维特点之间的矛盾,就要充分利用教具,学具,运用其直观性进行教学。
确立目标:
1、通过动手操作和观察比较,使学生进一步认识三角形,理解三角形的概念,认识三角形各部分名称,知道三角形的底和高,会在三角形内画高。
2、通过摆一摆、拉一拉的实验,使学生理解三角形的稳定性,了解这一特性在生活中的应用。
3、培养学生观察、操作能力和应用数学知识解决实际问题的能力。
4、体会数学与生活的密切联系,培养学生学习数学的兴趣。
评价标准:
测评目标1:知道三角形的特征,正确说出三角形各部分的名称。
测评目标2:知道三角形的底和高的含义,能正确画出三角形的高。
测评目标3:掌握三角形的特性,了解这一特性在生活中的运用。
教学环节
环节1:
直观感知,导入新课
创设情境,生成问题。
1、说说生活中有哪些物体的形状是三角形的。展示学生收集的有关三角形的图片
2、课件出示埃及金字塔图片,简单介绍有关埃及金字塔的历史,帮助学生进一步了解古埃及文明史,激发学生的学习兴趣。让学生找出金字塔上的三角形,并用笔把三角形描出来。
3、课件出示大桥图片,先让学生整体观察大桥,感受大桥的宏伟、壮观,再让学生从大桥中找出各种各样的三角形,并用笔把三角形描出来
4、能手口一致地描绘三角形。让学生把描绘三角形的动作和语言描述紧密结合,增加学生对图中不同形状三角形的直观感受。
5、导入新课。(板书:三角形的特性)
师:我们大家认识了三角形,三角形看起来简单,但在工农业生产和日常生活中有许多用处,看来生活中的三角形无处不在,三角形还有些什么奥秘呢?今天这节课我们就一起来研究这个问题。
让学生在观察交流中复习学习过的知识,为后面的学习打下基础。
环节2:
操作感知理解概念
探索交流,解决问题
(一)三角形的概念
1、师:请你画一个自己喜欢的三角形,边画边想你是怎样画这个三角形的?你画的三角形有什么特点?教师根据学生的汇报板书,标出三角形各部分的名称。
师:同学们说得真好,现在请同学们把刚刚画的三角形标上各部分的名称。
2、概括三角形的定义。
师:那你认为什么样的图形才是三角形?由学生的回答总结出三角形的概念并板书:三条线段围成的图形叫做三角形。
怎样判断图形是不是三角形呢?“围成”和“组成”一样吗?有什么区别?
判断下面几个图形是不是三角形?课件出示。
3、认识三角形的`底和高。
除了三角形概念,书中还向我们介绍了什么?自学课本60页余下的内容。
根据学生的回答小结出以下内容:
(1)三角形各部分的名称(边、角、顶点)
(2)如何用字母表示三角形。
(3)三角形的底和高。
师展示三角形高的画法并问:老师刚刚画的线段叫什么?(三角形的高)它所垂直的边叫什么?(三角形的底)在画的过程中让学感受三角形的底和高是一组互相垂直的线段,体会底与高的相互依存性,为学习三角形面积的计算奠定基础。
师:画三角形的高要注意什么?(用三角尺,画垂直符号)请同学们再画一个三角形并画出高,标上底和高。
指出这个三角形就可以表示为三角形ABC。请同学们把刚刚画的三角形也表示成三角形ABC。
(二)三角形的特性:
1、下面做一个游戏,请你用三根小棒摆一个三角形,用四根小棒摆一个四边形,你能摆几个?摆完以后小组内交流一下,看看你有什么发现。(让学生充分体会,无论怎么摆,所摆出的三角形大小、形状不变,摆出的四边形大小、形状可以发生变化。)
2、为什么呢?是什么确定了三角形的形状和大小呢?(角度确定形状,边长确定大小)
3、对给定的三角形、四边形进行拉伸.
给出教具,让学生拉一拉,看看有什么发现?(三角形三条边的长度确定了,这个三角形的形状和大小也确定了,不会发生变化了,由于四边形的角度会发生变化,所以它的形状也会发生变化,所以三角形具有稳定性。)根据学生的回答归纳出:三角形不易变形,具有稳定性。(板书)
4、看看下图中哪有三角形、四边形?想想它们有什么作用?
5、举出生活中应用三角形稳定性和四边形易变性的例子。
6、接着问:要使这个四边形像三角形一样拉不动,怎么办?
小结:三角形的这种特性在生活中的应用非常广泛,在今后学习数学的时候,我们应该多想想,怎样把数学中的有关知识应用到实际生活中去。
学生在已有知识的基础上自己动手画一个三角形,并观察总结出三角形的定义,三角形的特征。再在老师的指导下学会画三角形的高,最后通过学生动手拼三角形和四边形认识三角形不易变形的特性。
环节3:
巩固练习,提高认知
巩固应用,内化提高
1、完成60页做一做
2、指导学生完成练习十五1、2、3题。
先让学生尝试画,然后同桌交流画法,怎样画得又好又快?
环节4:
回顾反思,提高认识
回顾整理,反思提升
通过这节课的学习,你有什么收获?
1、三角形和四边形都是平面图形。
2、应用三角形的稳定性可以解决许多实际生活问题。
3、知道了用三角形三个顶点的字母可以表示一个三角形,会在三角形内画高。
在老师的眼里,三角形不仅具有稳定性,它还是一种美丽的图形。它和圆、长方形等一起构成了美丽的图形世界,可以说数学因为有了美丽的图形而五彩纷呈,生活因为有了美丽的图形而更加丰富多彩。
板书设计:
三角形的特性
1、定义:由三条线段围成的图形叫三角形。
2、特征:3条边,3个角,3个顶点。
3、特性:具有稳定性。
作业
教学反思
三角形教学设计5
教学内容:
人教版五年级上册第五单元第84~87页内容
教学目标:
1、探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化思想的价值,发展学生的空间观念和初步的推理能力。
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:
探索并掌握三角形的面积公式,能正确计算三角形的面积。
教学难点:
理解三角形面积公式的推导过程。
教学准备:
多媒体课件、三角形学具。
教学过程:
一、创设情境,引出课题
课件出示一个平行四边形。
师:这是什么图形,你会计算它的面积吗?说一说怎么算。
根据学生的回答,板书:平行四边形的面积=底×高
师:你能把这个平行四边形分成两个完全一样的三角形吗?该怎么分?
学情预设:学生一般有以下两种分法:
师:现在请你拿出自己准备好的平行四边形,我们来验证一下。用刚才的方法画一画、剪一剪、比一比,看看这两个三角形是否完全一样?
学情预设:学生动手操作,教师巡视指导,发现:剪下来的两个三角形是完全一样的。
师:假如这个平行四边形的面积为40平方厘米,那么其中一个三角形的面积是多少?(20平方厘米)
师:为什么?(剪下的两个三角形完全一样,就说明三角形的面积是平行四边形的一半)
师:刚才我们借助已知的.平行四边形的面积,知道了三角形的面积。如果我们从桌子上任意取一个三角形,(师拿起任意一个三角形模型)这个三角形的面积怎样求呢?这就是我们今天要学习研究的内容。
【设计意图】:
从不会计算面积的图形中揭示课题,激发学生的探究兴趣。
板书课题:三角形的面积
二、自主探索,得出公式
1、动手实验。
师:同学们,老师已经给每组同学的学具袋中准备了三角形学具,请你们选择合适的三角形摆一摆,推导三角形的面积计算公式,比一比,哪一组想到的方法最多。
学情预设:学生动手实验,教师巡视指导,有前面的例子做铺垫,学生自然而然会想到用两个完全一样的三角形来拼。拼出的图形有三角形、长方形和平行四边形。选出拼成长方形和平行四边形,这两种是已经会计算面积的图形。把三角形转化成已学过的平行四边形、长方形或正方形来推导三角形的面积计算公式。
【设计意图】:
给学生留出足够的空间,发挥学生的主观能动性和合作精神,自主探索三角形的面积的公式。
2、学生代表上台演示汇报
师:你是如何推导出三角形的面积公式的?谁来给我们演示?
演示一:把两个完全一样的三角形拼成平行四边形。(如下图)
师:观察这些平行四边形,它们有什么共同特点?我们把拼成的平行四边形和原来的三角形作比较,你能发现平行四边形的底和高与三角形的底和高有什么关系吗?那么三角形的面积可以怎么计算呢?
根据学生的回答,教师板书如下:
三角形的面积=平行四边形的面积÷2=底×高÷2
展示二:把两个完全一样的直角三角形拼成长方形或正方形。(如下图)
师:观察图形,我们把拼成的长方形或正方形与原来的三角形作比较,你能发现它们之间的关系吗?请你根据你拼成的图形,推导出三角形的面积计算公式。
根据学生的回答,教师板书如下:
三角形的面积=长方形的面积÷2=长×宽÷2=底×高÷2
师:同学们,如果用a表示三角形的底,h表示三角形的高,s表示三角形的面积,三角形面积的字母公式是什么?
三、学以致用,解决问题。
师:同学们,我们已经推导出了三角形面积计算公式,现在我们就用三角形的面积计算公式解决一些实际问题,好吗?(好)
1、计算生活中的三角形的面积
(1)计算红领巾的面积
师:老师这里有一条红领巾,(展示实物)如果想求它的面积有多少?需要知道什么条件?(需要知道三角形的底和高)
(课件出示例2)
红领巾的底是100cm,高33cm,它的面积是多少平方厘米?
师:请同学们算一算。
(学生练习后讲评订正)
(2)计算三角形标志牌的面积
师:我们经常见到类似以下标志的标志牌(课件出示如下图),你知道这个标志牌的面积吗?谁口算一下。(4×3÷2=6(平方分米))
师:都是这样做的吗?为什么不用3.2×3÷2呢?
(因为3.2分米不是3分米对应的底。)
师:如果与3.2分米对应的高是3.75分米(课件出示)还可以怎样列式?
(3.2×3.75÷2)
师:通过这道题的解答,你明白了什么?
师:对啊,我们要计算三角形的面积时必须找准相对应的底和高,才利用三角形面积的计算公式来计算。
(3)认识道路交通警示标志。
师:请看屏幕。(多媒体出示)
师:你们认识这些交通警告标志吗?
(学生回答后,老师边小结,课件边出示各标志的含义)
师:同学们,我们示范小学校门口到邮政局这段路,在放学时经常出现交通混乱,为了改变这种状况,交警大队准备用铁皮制作其中两块这样警示牌,你能算出需要多少铁皮吗?(课件同时出示标有底是9分米,高7.8分米的数据的图形)
(学生练习后讲评订正,订正时主要关注”用简便方法解答”的小结。)
(4)画面积相等的三角形。
师:看到同学们这么积极,小精灵也给大家带来了问题,请大家看屏幕(课件出示)
师:上图中哪两个三角形的面积相等?你还能画出和它们面积相等的三角形吗?
(学生打开书87页,在书中画一画,完成第6题)
师:你画出了几个面积相等的三角形?如果给你足够的时间你能画出多少个这样的三角形?(无数个)
师:通过画这样的三角形,你发现了什么?
生:三角形的面积与底和高有关,与形状无关。
【设计意图】:
通过分层次的解决实际问题的练习,既巩固了学生对三角形面积计算公式的理解应用,又使学生感受到三角形面积公式的变形应用,同时对学生进行交通安全教育。〕
四、课堂小结
师:本节课你学到了什么新知识?你觉得计算三角形面积时应注意什么?
(学生汇报:1、三角形的底和高必须是相对应的一组。2、别忘了除以2.)
五、布置作业:
课本P86--87页第2、4、5题
三角形教学设计6
一、教学目标:
1、理解掌握三角形内角和是180°,并运用这一性质解决一些简单的问题。
2、通过直观操作的方法,引导学生探索并发现三角形内角和等于180°,在实验活动中,体验探索的过程和方法。
3、在探索和发现三角形内角和的过程中获得成功的体验。
二、教学重、难点:
重点:探索并发现三角形内角和等于180°。
难点:运用三角形内角和等于180°的性质解决一些实际问题。
教具:课件、三角形若干。
学具:量角器、直角三角形、锐角三角形和钝角三角形各一个。
三、教学过程
(一)创设情境,导入新课
我们已经学过了三角形的知识,我们来复习一下,看看大屏幕,各是什么三角形?谁能说说什么是锐角三角形、直角三角形、钝角三角形?追问:不管是什么三角形它们都有几个角呢?这三个角都叫做三角形的内角,而这三个内角的和就是这个三角形的内角和。那么谁来说一说什么是三角形的内角和?三角形有大有小,形状也各不相同,那么它们的内角和有没有什么特点和规律呢?我们来看一个小片段,仔细听它们都说了什么?
教师放课件。
课件内容说明:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”
都听清它们在争论什么吗?(它们在争论谁的内角和大。)谁能说一说你的想法?(学生各抒己见,是不评价)果真是这样吗?下面我们就来研究“三角形内角和”。
(板书课题:三角形内角和)
(二)自主探究,发现规律
1、探究三角形内角和的特点。
(1)检查作业,并提出要求:
昨天老师让每位学生都分别剪出了锐角三角形、直角三角形和钝角三角形,并量出了每个角的度数,都完成了吗?拿出来吧,一会我们要算出三角形的内角和填在下面的.表格里。我们来看一下表格以及要求。出示小组活动记录表。
小组活动记录表
小组成员的姓名
三角形的形状
每个内角的度数
三角形内角的和
(要求:填完表后,请小组成员仔细观察你发现了什么?)
②小组合作。
会使用表格了吗?下面我们就以小组为单位,按照要求把结果填在小组长手中的表格内。
各组长进行汇报。发现了三角形的内角和都是180°左右。
师:实际上,三角形三个内角和就是180°,只是因为测量有误差,所以我们才得到刚才得到的数据。
2、验证推测。
那么同学们有没有什么办法知道三角形的内角和就是180°呢?大家可以讨论一下,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。师生先演示撕下三个角拼在一起是否是平角,同学们在下面操作进行体验,再用课件演示把三个内角折叠在一起(这时要注意平行折,把一个顶点放在边上)学生也动手试一试。
通过我们的验证我们可以得出三角形的内角和是180°。
板书:(三角形内角和等于180°。)
3、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)
4、同学们还有什么疑问吗?大家想一想我们知道了三角形内角和是180°可以干什么呢?(知道三角形中两个角,可以求出第三个角)
出示书28页,试一试第3题,并讲解。
说明:在直角三角形中一个锐角等于30°,求另一个锐角。
生独立做,再订正格式、以及强调不要忘记写度。
小结:同学们有没有不明白的地方?如果没有我们来做练习。
(三)巩固练习,拓展应用
1、出示书29页第一题。说明:第一幅图是锐角三角形已知一个锐角是75°,另一个锐角是28°,求第三个锐角?第二幅图是直角三角形已知一个锐角是35°,求另一个锐角?第三幅图是钝角三角形已知一个锐角是20°,另一个锐角是45°,求钝角?
完成,并填在书上。讲一讲直角三角形还有什么解法。
2、出示29页第2题。
说明:一个钝角三角形说:我的两个锐角之和大于90°。
一个直角三角形说:我的两个锐角之和正好等于90°。让学生判断。
3、画一画:
出示四边形和六边形。运用三角形内角和是180°计算出各自的内角和。你能推算出多边形的内角和吗?
三角形内角和180度是科学家帕斯卡12岁时发现的。我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。
(四)课堂总结
让学生说说在这节课上的收获!
三角形教学设计7
教学目标:
1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.
2.培养学生观察能力、动手操作能力和类推迁移的能力.
3.培养学生勤于思考,积极探索的学习精神.
教学重点:理解三角形面积计算公式,正确计算三角形的面积.
教学难点:理解三角形面积公式的推导过程.
教学过程:
一、激发
1.出示平行四边形
提问:
(1)这是什么图形? 计算平行四边形的面积我们学过哪些方法?学生总结并回答前面学过的内容。(数表格的方法,割补法,直接测量底和高进行计算等等)
师总结:平行四边形面积=底×高
(2)底是2厘米,高是1.5厘米,求它的面积。
(3)平行四边形面积的计算公式是怎样推导的?
2.出示三角形。三角形按角可以分为哪几种?
3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)
教师:今天我们一起研究“三角形的面积”(板书)
二、指导探索
(一)推导三角形面积计算公式。
1、师出示情境图,提出问题:三角形的面积你会求吗?图中的几位同学它们在讨论什么?你有什么好办法吗?(学生讨论,拿出学具分小组讨论)
分析:如果我们不数方格,怎样计算三角形的面积,能不能像平行四边形那样,找出一个公式来?
2、三角形与平行四边形不同,按角可以分为三种,是不是都可以转化成我们学过的图形。我们分别验证一下。(学生自己发现规律,教师出示场景二)
3、启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?
4、用直角三角形推导
(1)用两个完全一样的直角三角形可以拼成哪些图形?学生自由拼图。
(2)拼成的这些图形中,哪几个图形的面积我们不会计算?
(3)利用拼成的长方形和平行四边形,怎样求三角形面积?
(4)小结:通过刚才的.实验,想一想,每个直角三角形的面积与拼成图形的面积有什么关系?(引导学生得出:每个直角三角形的面积等于拼成的平行四边形面积的的一半。)
5、用锐角或者钝角三角形推导。
(1)两个完全一样的锐角三角形能拼成平行四边形吗?学生试拼。引导学生得出:两个完全一样的锐角三角形也可以拼成平行四边形。
(2)刚才同学们都把两个完全一样的锐角三角形,拼成了平行四边形,(教师边演示边讲述边提问)对照拼成的图形,你发现了什么?(学生自主拼图)引导学生得出:每个锐角三角形的面积等于拼成的平行四边形面积的一半。
(3)两个完全一样的钝角三角形能用刚才的方法来拼吗?学生实验,教师巡回指导。
问题:通过刚才的操作,你又发现了什么?
引导学生得出:每个钝角三角形的面积等于拼成的平行四边形面积的面积的一半
6、归纳、总结公式。
(1)通过以上实验,同学们互相讨论一下,你发现了什么规律?
(2)汇报结果。
引导学生明确:
①两个完全一样的三角形都可以拼成一个平行四边形。
②每个三角形的面积等于拼成的平行四边形面积的一半。
③这个平行四边形的底等于三角形的底。
④这个平行四边形的高等于三角形的高。
7、提问并思考,强化推导过程:三角形面积的计算公式是怎样推导出来的?为什么要加上“除以 2”?(强化理解推导过程)
三角形面积=底×高÷2
8、教学字母公式。
引导学生回答:如果用S表示三角形面积,a和h分别表示三角形的底和高,三角形的面积公式也可以用字母表示为:
(二)、应用
1、教学例题:
红领巾分底是 100cm,高 33厘米,它的面积是多少平方厘米?
①读题。理解题意。
②学生试做。指名板演。
③订正。提问:计算三角形面积为什么要“除以2”?
2、完成做一做
三、质疑调节
(一)总结这一节课的收获,并提出自己的问题.
(二)教师提问:
(1)要求三角形面积需要知道哪两个已知条件?
(2)求三角形面积为什么要除以2?
四、反馈练习
(一)填空
(1)一个三角形的底是4分米,高是30厘米,面积是( )平方分米。
(2)一个三角形的高是7分米,底是8分米,和它等底等高的平行四边形的面积是( )平方分米。
(3)一个三角形的面积是4.8平方米,与它等底等高的平行四边形的面积是( )
(4)一个三角形的面积比它等底等高的平行四边形的面积少12.5平方分米,平行四边形的面积是( )平方分米,三角形的面积是( )平方分米。
(5)一个三角形和一个平行四边形的面积相等,底也相等,如果三角形的高是10米,那么平行四边形的高是( )米;如果平行四边形的高是10米,那么三角形的高是()米。
(二)判断
1、一个三角形的底和高是4厘米,它的面积就是16平方厘米。( ×)
2、等底等高的两个三角形,面积一定相等。 (√ )
3、两个三角形一定可以拼成一个平行四边形。 ( ×)
4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。()
(5)两个面积相等的三角形可以拼成一个平行四边形。(×)
(6)等底等高的两个三角形,面积一定相等。( √ )
(7)三角形面积等于平行四边形面积的一半。(× )
(8)三角形的底越长,面积就越大。(× )
(9)三角形的底扩大2倍,高扩大3倍,面积就扩大6倍。(√ )
五、作业:85页做一做和练习十六第1、2、3、4题
板书设计:
三角形面积的计算
因为:平行四边形的面积=底×高, 例1… …
三角形面积=拼成的平行四边形的一半, 100×33÷2=1650(cm)
所以三角形面积=底×高÷2
S=ah÷2
三角形教学设计8
【教材分析】
本课是苏教版四年级下册第七单元第一课时的内容。学生在已经直观认识了三角形,且对三角形有一些感性认识。所以教学例1时选择从生活中的场景入手,通过让学生画三角形、说三角形特点,逐步总结出三角形概念及基本特征。教学例2,也是从现实情境出发,通过测量人字梁高度,感知三角形的底和高,并由此抽象出三角形高和底的概念。从实例到抽象概念,使学生获得正确而清晰的表象。
【学情分析】
学生在低年级时已经对三角形有了直观的认识和初步的感知,这种感知往往来自于生活,所以教学时例题的选择都是来源于现实生活,有利于学生对概念的抽象。画高对学生来说是一个难点,所以教学过程中要引导学生和已有知识进行练习,在比较中区分,从而正确的对知识体系进行重组和建构。
【教学目标】
1、知识与技能:使学生联系已有知识和经验,通过观察、操作、测量等具体活动,认识三角形的基本特征,初步形成三角形的概念,知道三角形的高与底的含义,会用三角尺画三角形的高(在三角形内)。
2、过程与方法:使学生经历探索和发现三角形基本特征的过程,积累一些观察和操作、比较和分析、抽象和概括等活动经验,体验数学抽象的一般过程,发展空间观念。
3、情感态度和价值观:使学生在参与数学活动的过程中,获得一些学习成功的体验,进一步激发数学学习的兴趣,树立学好数学的信心。
【教学重点】
认识三角形的基本特征,理解三角形概念。
【教学难点】
会画三角形底边上的高。
【课时安排】
安排1课时
【课前准备】
课件,直角三角尺,学生每人一张学习单
【教学过程】
一、谈话导入出示大桥夜景,提问:同学们,你能从这幅图中看到什么?师:生活中你还在哪些地方见过三角形?多媒体展示存在于生活中的三角形。
揭题:生活中我们在许多地方见到过三角形,到底什么样的图形才能叫做三角形,三角形又有哪些特征呢?今天跟随老师一起来认识三角形(板书课题)
二、探究新知
(一)三角形概念、特征
1、画三角形提出要求:刚才我们看了那么多的三角形,你能画出来一个吗?生尝试画三角形,教师巡视,收集学生存在的错误案例。
2、展示交流,抽象概念师提问:你画的三角形有什么特点?小组交流。
指名展示,并介绍所画三角形特点。
(1)三角形由三条边组成。师追问这三条边是什么线?根据学生回答板书:线段
(2)出示反例,,这三条线段能组成三角形吗?这三条线段应该是什么关系?板书:围成
(3)三条线段围在一起就是三角形了吗?出示反例。这三条线段应该怎样围在一起呢?板书:首尾相接抽象概念:根据我们刚才的交流不难发现,这些是三角形共同的特点。所以,我们把由三条线段首尾相接围成的图形叫做三角形。板书完整。
师:同位之间看着手中的图形互相说一说什么样的图形叫做三角形。
3、自学三角形各部分名称师:你知道三角形各部分的.名称吗?自学书本75页。
组织交流:这是三角形的什么(边)?有几条边?顶点(有几个顶点)?角,有几个角?
4、试一试提问:如果给你顶点让你画出一个三角形,你能画出来嘛?出示题目,自行阅读理解题目意思。学生绘制。
交流展示,谁愿意展示一下自己所画的三角形?提问:任选3个作为顶点,都能画一个三角形吗?你有什么发现?为什么下面3个点不能画出一个三角形。交流(找2名学生说)小结:在同一条直线上的点只能画出一条直线。所以三角形的顶点能不能在同一条直线上。
(二)认识高和底
1、教学三角形底和高的概念师:三角形在我们生活中还有很多的用处,出示屋顶图。从这几幅图中你又能看到什么?知道这是什么吗?如果学生回答不出则师简单介绍人字梁。
师:同学们手中也有一张人字梁图,你能量出图中人字梁的高度吗?学生尝试。
展示交流,指名演示度量过程并提问
(1)你量的是从哪里到哪里的距离?引导学生说出从人字梁的顶点到它对边的距离
(2)我们所量的这条线段和人字梁的底边在位置上有什么关系?(互相垂直)
(3)你能想办法验证一下吗?指名演示验证过程。
(4)师小结:通过刚才讨论我们可以发现人字梁的高度,其实就是从这个三角形的顶点(出示顶点)到对边所做的垂直线段的长度(边指边说)。
抽象概念:如果我们把这个人字梁所在的三角形画出来,那么从三角形的一个顶点向它的对边作一条垂直线段,这条垂直线段就是三角形的高(板书,画出高,和直角标志),而这条对边就叫做三角形的底(标出底)。
回忆刚才过程,说一说什么是三角形的高,什么是三角形的底?
2、教学画高
(1)提问:如果已知三角形的底,怎样画出底边上的高呢?
(2)学生尝试画底边上的高。
(3)指名演示画高,总结画高的方法和注意点。
(4)对比画三角形底边上高的方法和过直线外一点画已知直线垂直线的方法。寻找相同和不同点。
三、练习巩固同学们这节课收获可不少,不仅知道了什么样的图形是三角形,还知道了三角形的特征,认识了三角形的底和高,也知道如何画底边上的高。接下来就是要检验你们的时刻了。做好准备了吗?
1、练一练第1题。
(1)学生同位之间互相说一说。
(2)指名说一说哪些是,哪些不是,为什么?
2、练一练第2题。
(1)说一说题目有哪些要求。注意取整厘米。
(2)学生独立完成。
(3)反馈交流。注意让学生表达清楚:第一个图形底边上的高为2cm。
底3、下图中底边上的高画的对吗?底底底④③②①
(1)投影出示,先观察,思考如何改正?
(2)指名用直角三角尺把正确的画图方法摆出来。
(3)说说在画高时我们需要注意哪些问题。
4、练习十二第1题。
(1)独立完成,指名展示自己的作业,并说说画高的方法。
(2)改变第一个三角形的底,提问:这时该如何画高。指名演示。再改变底边,又该如何画?观察图1,你有什么发现?三角形有几条高?
(3)讨论直角三角形的的高。提问:这是一个什么三角形?你能指出它的两条直角边吗?如果以一条直角边为底(老师用手指),怎样画三角形的高?指名摆三角尺。你有什么发现?如果以另一条直角边为底呢?你又有什么发现?
(4)小结:直角三角形中以一条直角边为底,另一条直角边就是三角形的高。
(5)提问:你能画出这个直角三角形的第三条高吗?以哪条边为底?
5、练习十二第2题。
(1)学生按要求画出三角形。
(2)同桌互相检查所画的三角形是否满足要求,交流是怎样画的。
(3)展示学生作业,并提问:问什么条件相同,所画的三角形却不同呢?你有什么发现?
(4)如果用同一条底边,你能画出多少个等高的三角形?
四、全课总结提问:这节课学习了什么?你有哪些收获?还有什么疑问?
【板书设计】认识三角形由三条线段首位相接围成的图形叫三角形。
高底教学反思:本课教学过程中通过画三角形,说三角形特征,并用正反例引导学生建立正确的三角形概念,从而突出本课教学重点。而对于本课的教学难点,则通过让学生联系已有知识,对比知识之间的联系和区别,从而对知识体系进行重新建构,突破难点。而练习过程中,除了关注基本的知识技能的掌握,还通过一些题目发展学生的思维能力。
三角形教学设计9
教学目标:
1.知道三角形的内角和是180度,理解三角形内角和与三角形的大小无关。
2.通过测量、计算、猜想、实验等数学活动,积累认识图形的方法和经验,逐步推理、归纳出三角形内角和。
3.关注学生在操作活动中遇到的真问题,培养学生诚实严谨的实验态度,实事求是的科学的态度。
教学重点:
知道三角形的内角和是180度,理解三角形的内角和与三角形的大小、形状无关。
教学难点:
经历操作活动,推理、归纳出三角形的内角和。
教学资源:
多煤体课件,各种三角形,三角板,量角器,剪刀。
教学活动:
一、创设情境,导入新课。
1.昨天我们学习了三角形的分类,三角形按角的特征怎么分类?按边的特征怎么分类?
2.信封中装一个三角形露出一个锐角,猜一猜信封中装的是一个什么三角形?能确定吗?(露出一个钝角)现在能确定了吗?为什么现在就能确定了?(有一个钝角,两个锐的三角形是钝角三角形)。
3.三角形中还隐藏着那些知识?三角形的三个内角的和是多少度?这节课我们研究三角形的内角和。(板书课题:三角形的内角和)
二、合件交流,操作发现。
1.(课件)你知道三角尺内角的度数分别是多少吗?每个直角三角尺的'内角度数之和都是多少度?我们能根据三角尺的内角和是180度,就得出三角形的内角和的结论吗?应该怎么研究?(应该把三角形中所有的类型锐角三角形、直角三角形、钝角三角形都研究后,才能得出结论)(课件出示学习单)。
2.组织学生小组合作:
请同学们以4人为一个小组,三个人分别量一量,算一算一种三角形的内角的度数,小组长填写学习单。老师巡视。①师:能不能只量出两个角的度数,不量第三个角的度数,就开始填表、计算?(我们的研究必须是科学的、实事求是的,测量的数据必须是真实的,来不的半点马虎)。②同桌交流,你们有什么发现?
3.组织学生汇报交流:
①那个组说一说你们组测量的数据和计算的结果?(学生的计算不是正好180度时,问:大约是多少度?)②你们有什么发现?(锐角三角形、直角三角形、钝角三角形的内角和大约都是180度。③你能提出什么猜想?(我猜三角形的内角和是180度)老师板书:三角形的内角和是180°我们的猜想对不对,(在板书后面打上“?”),就需要我们验证,请同学们想办法验证我们的猜想对不对?(学生通过折的方法剪拼进行验证;学生通过剪、拼的方法进行验证。)
4.学生展台展示自己的难方法。通过验证,我们发现三角形的内角和是180度。老师把“?”改为“!”。
5.操作总会有误差,有没有别的方法说明呢?(老师课件演示长方形的四个角都是直角,所以长方形的内角和应为:90°×4=360°。将长方形沿对角线分割,可以分成两个完全相等的直角三角形,所以直角三角形内角和应为:360°÷2=180°;沿高可以将任意三角形分成两个直角三角形。由于前面证明了任意直角三角形的内角和是180°,因此两个直角三角形的内角和应为:180°×2=360°。而直角三角形的两个直角不属于分割前三角形的内角,因此任意三角形的内角和应为:360°-180°=180°。)
三、实践应用,拓展延伸。
1.这里有一条红领巾,它的形状是等腰三角形,其中∠1=110°,请计算出∠2=()°,∠3=()°。
2.把下面这个三角形沿虚线剪成两个小三角形,每个小三角形的内角和是多少度?(把一个三角形剪成两个小三角形,虽然大小发生了变化,可是内角和依然是180度,说明三角形的内角和与三角形大小无关)。
四、反思总结,自我建构。
这节课你有什么收获?
这节课我们就研究到这儿,同学们再见!
三角形教学设计10
【教学目标】
1.通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。
2.通过实验,使学生知道三角形的稳定性及其在生活中的应用。培养学生观察、操作的能力和应用数学知识解决实际问题的能力。
【重点难点】
认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。
【教学准备】
三角板、木条钉成的三角形、三角形卡片。
教学过程
【情景导入】
教师展示三角板,观察三角形的特点,请学生说说生活中哪些物体上也有三角形。
红领巾、三角架??
引入课题:其实三角形在我们的生活中有着广泛的运用,这节课我们一起来研究三角形。
板书课题:三角形的特性
【新课讲授】
知识点1 三角形的特性
教学例1。
1.做一做:
请学生动手制作一个三角形。看一看、摸一摸、说一说三角形有什么特点?(几条边、几个角、几个顶点??)
学生讨论,学生代表发言。
小结:三角形有三条边、三个角、三个顶点。
2.画一画:
让学生自己画出三角形,并在三角形上尝试标出边、角、顶点。 教师根据学生的汇报板书,标出三角形各部分的名称。
3.说一说:概括三角形的定义。
大家对三角形有了一定的了解,能不能用自己的话概括一下,什么样的图形叫三角形?
学生回答:
小结:由三条线段围成的封闭图形(每相邻两条线段的端点相连)叫三角形。
4.做一做:请学生动手用三支笔拼成一个三角形,并说说三角形的顶点、边、角。
知识点2 认识三角形的底和高
提问:什么是三角形的高?怎样正确的'画出三角形的高呢?请打开教材第60页,看看书上是怎样说的,又是怎样画的?
学生讨论发言。
小结:从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
老师在黑板上画两个三角形,在黑板上示范作高两次。引导学生注意观察。 提问:老师怎样正确的画出三角形的高呢?
老师根据学生的回答在刚才的三角形中画出一条高,并标出它所对应的底。学生动手画出一个三角形,作出它的高,并标出与高相对应的底。
提问:三角形可以作出几条高呢?
学生动手尝试,讨论回答。教师请学生指出每条高以及与之相对应的底。 随意画出一个三角形,标出他的高和底,和同桌说一说刚才画的高是以哪条边为底画的?
为了表达方便,我们通常把三角形的三个顶点分别用字母A、B、C表示,这个三角形可以称作三角形ABC,在三角形中标上字母ABC。
知识点3 三角形的稳定性
教学例2
做一做:学生拿出预先做好的三角形、四边形边框,分别拉一拉边框,你有
三角形教学设计11
活动目标
认识三角形,知道三角开有三条边,三个角,复习手口一致点数到了。
培养幼儿的观察和比较能力。
引导幼儿积极与材料互动,体验数学活动的乐趣。
乐意参与活动,体验成功后的乐趣。
教学重点、难点
1、认识三角形,并知道三角形有许多形状
2、区分三角形与正方形
活动准备
教具:三角形的彩纸或吹塑纸,等边三角形,等腰三角形,直角三角形,锐角三角形,钝角三角形各1张。够每个幼儿做1-2个三角形的小棍(长短不同),正方形彩纸一张
活动过程
1、三角形是什么样子的?老师出示一个等腰三角形,告诉幼儿这是一个三角形,。请幼儿数一数三角形有几条边?几个角?
教师小结:这是一个三角形,三角形有三条边,三个角,凡是有三条边,三个角的图形,我们都把它叫做三角形。
2、复习对三角形的认识。教师出示一个直角三角形,请幼儿想一想这是什么形状?为什么?
3、和正方形比一比,看有什么不同。教师一个正文形请幼儿说出名称,并找出正方形和三角形有哪些不同的地方?
教师小结:
正方形有四条边,三角形有三条边,正方形的四条边一样长,三角形的三条边不一样长;正方形有四个角,三角形有三个角;正方形的四个角一样大,三角形的三个角可以不一样大。(教师边说边演示)
4、它们都是三角形吗?教师出示各种三角形,请幼儿说说它们是不是三角形,为什么?(幼儿只要答出“是三角形,因为它们都有三条边,三个角”就可以了。
教师小结:
①三角形有三条边,三个角
②三角形有许多兄弟,它们虽然长得不一样,可是它们都有三条边,三个角
③三角形的三条边可以不一样长,三个角可以不一样大
④只要一个图形有三条边,三个角,它们就是三角形
5、让幼儿寻找常见实物中有什么东西像三角形
6、幼儿操作。将许多长短不同的小棍放在幼儿数3根小棍做三角形(可以找一样长的小棍也可以找不一样长的;做得快的可以做第二个,第三个)。
教学反思
我上这节数学课,就是让孩子们认识三角形,难点就是让幼儿如何区分三角形和正方形。在这教学过程中,我将许多长短不同的`小棍放在孩子们的桌上,让孩子们数3根小棍拼做三角形(可以找一样长的小棍,也可以找不一样长的)。通过让他们动手操作,让孩子们进一步认识到了1、三角形有三个角、三条边2、三角形的三条边可以不一样长,三个角可以不一样大。
三角形教学设计12
设计思路:
根据幼儿活泼好动,喜欢摆弄物品的特点,我为幼儿提供了小棒、图形、彩纸等大量活动材料,让幼儿在玩中学、学中乐,乐中做,启发幼儿主动探索、发现三角形的特征,培养幼儿的创新意识,使幼儿养成动手、动脑、动口的好习惯。
活动目标:
1、引导幼儿在探索操作活动中,初步感知三角形,知道其名称和形状特征;
2、培养幼儿的动手操作能力,发展幼儿思维的灵活性;
3、初步培养幼儿的创新意识和实践能力。
活动准备:
1、长短不同的小棒若干,总数是幼儿人数的6倍;
2、三角形卡片若干;
3、红领巾、小房子、小旗子等三角形实物若干;
4、彩纸、铅笔、橡皮、剪刀每人一份。
活动过程:
一、探索操作:
1、在正方形拼图的基础上,请幼儿任意拿3根小棒拼摆图形。幼儿探索活动,教师指导。
2、请个幼儿说一说,摆得什么样的图形,用了几根小棒,有几个角;
3、师生共同拼图,并点数图形的边、角;
小结:有3条边、3个角的图形叫三角形。丰富词汇:三角形。
二、探索感知:
1、请幼儿任意取出一个三角形卡片,点数它有几个条边、几个角?
2、出示各种不同的三角形,引导幼儿观察其不同点,相同点。
不同点:有的'大、有的小、有的角尖、有的角大……
相同点:都有3个角、3条边。
3、小结:不管图形大小,不管角尖,只要有3条边、3个角的图形都是三角形。
三、找一找、想一想、说一说
1、引导幼儿在环境中找出象三角形的物体(小彩旗、红领巾)。
2、请幼儿想一想、说一说,见过的象三角形的物体
四、做一做、试一试剪裁三角形并拼图
1、教师引导幼儿用各种方法剪裁出任意三角形(剪、撕、画等),培养幼儿的创新意识
2、鼓励幼儿用剪出的三角形拼出自己喜爱的动物或物品的形象。
五、自我评价,展览幼儿作品。
三角形教学设计13
【教学内容】:
人教版五年级上册第六单元第91~92页内容
【教学目标】:
1、探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
【教学重点】:
探索并掌握三角形的面积公式,能正确计算三角形的面积。
【教学难点】:
理解三角形面积公式的推导过程。
【教学准备】:
每人各两个完全一样的三角形,直角三角形、锐角三角形、钝角三角形任选一种,多媒体课件。
【教学过程】:
一、汇报演示
师:同学们请看屏幕,这两块披萨老师要买一块当做明天的早餐,你建议我买哪一块呢?如果现在给你一组数据呢?
师:同学们请看屏幕,为了我们在操场玩耍更安全,为每个班级在操场上画分了一个区域,现在咱们班级啊,就剩下这两块选一个了,你打算帮班级选哪一块呢?
师:为什么买这一块呢?
师:哦,同学们通过微视频的学习,已经会计算三角形的面积了是吗?
师:谁能说说三角形面积怎么求:三角形面积=底×高÷2
师:为什么它的面积是底×高÷2呢?
生:到前面展示三角形拼平行四边形过程。
夯实对应关系:两个完全相同的三角形可以拼成一个()拼成的平行四边形的底等于()拼成的平行四边形的高()因为平行四边形的面积是()所以三角形的'面积就是()。
师:总结三角形面积公式,用字母表示就是,计算三角形面的时候你知道需要注意什么?
师:刚刚我们一起推导了三角形面积的公式,它是通过转化成平行四边形后来求面积的,那你还记得我们当时学平行四边形的时候是怎样转化的吗?
师:看来这些知识之间是有联系的,并且我们可以通过已有知识的牵移,就可以解决新的问题。同学们那我们下节课要学习梯形的面积,你能想一想,它的面积可能怎样转化呢?下个微视频当中,我们一同去探究。先看我们的三角形吧。它的面积你学明白了吗?知道求的过程中需要注意什么吗?
师:一个小小的2会在三角形的世界里为我们带来许多神奇的变化,想见识一下吗?看你能战胜这个数字,还是被它打败了。
(一)判断题。
1、两个三角形的底都是20厘米,高都是10厘米,一定可以拼成平行四边形。
2、两个完全一样的直角三角形一定可以拼成正方形。
3、面积相等的两个三角形一定等底等高。
(二)选择题。
1、下面平行线间的3个三角形大小关系正确的是()
A、ABC面积大B、BCD面积大C、BCE面积大D、同样大
2、求右图中三角形面积正确列式为()
A、4.8×5÷2B、4×5÷2C、4×4.8
师:你是胜了,还是败了啊?败给了谁啊?哎,知己知彼百战百胜,咱明知和2打仗,怎么就败了呢?可惜啊!如果给你一个反败为胜的机会,你能把握好吗?那么好吧,机会要抓住啊,咱们的敌人还是谁啊?这次战场可别轻敌啊,再败下来,可没机会喽!
(三)解决问题
1、已知一个三角形的面积是500平方米,底是40米,求这个三角形的高。
一个三角形的底是3厘米,高是4厘米,面积是多少厘米?
另一个三角形的底是3厘米,高是4厘米,面积是多少厘米?
还有一个三角形,底是4厘米,高是3厘米,面积是多少厘米?
一个三角形,底是5厘米,高是2.4厘米,面积是多少厘米?
拓展延伸:
思考一:三角形和平行四边形面积相同,底也相同,它们的高什么关系?
思考二:三角形和平行四边形面积相同,高也相同,它们的底什么关系?
思考提示:若头脑中不能建立起两个图形,我们可以利用假设方式求出它们各自的高和底再进行观察。可以假设一组数据,假设它们的面积都是20平方厘米,底都是4厘米,我们可以求出它们的高再进行观察。如果思考一你能解决,相信思考二你便能推导出这种关系,如果不能,还可以利用假设的方法,比一比,看谁最聪明。
如果你能弄清楚上面的思考题,看看自己能不能快速计算出下面几道题?
三角形和平行四边形面积相同,底相同,三角形的高是30厘米,平行四边的高是?
三角形和平行四边形面积相同,底相同,平行四边形的高是30厘米,三角形的高是?
三角形和平行四边形面积相同,高相同,三角形的底是20厘米,平行四边的底是?
三角形和平行四边形面积相同,高相同,平行四边形的底是20厘米,三角形的底是?
三角形教学设计14
【活动目标】
1.认识三角形的特征,知道三角形由3条边,三个角。
2.能将三角形和生活中常见实物进行比较,找出和三角形相似的物体。
3.发展幼儿观察力,空间想象力。
【活动准备】
1.PPT一份,大三角板一个,长短不同的小棒,雪糕棒等
【活动过程】
一.导入:手指游戏:快乐的小鱼
二.学习三角形特征
1、认识三角形
(1)出示魔法线昨天张老师得到了一根魔法线,我今天把他带来了,让我们一起把它叫出来。123,请出来。
(PPT出现一根红色的魔法线)提问:它是什么颜色的?
(2)第一次变化这跟魔法线他会变,让我们一起喊123,看他会变成什么?(孩子们一起喊123,PPT出现三根红线)提问:数一数变成了几根线。
(3)第二次变化(孩子们一起喊123,PPT出现一个的三角形)又变成了什么?(三角形)
(4)触摸三角形老师这里也有一个大的三角形,我请小朋友们来摸一摸,他是不是有三条边,三个角。
(5)又一次变化一个三角形又变出了好多的三角形,虽然它们的大小不同,但他们都是三角形。
2、巩固三角形特征
(1)引导幼儿观察图形,发现三角形的特征。
前几天张老师去旅游。到了一个神奇的国家,三角形王国,他们这里的东西都是三角形的,老师把他拍了下来今天和你们一起来分享(继续看PPT,出示各种各样的三角形物品)A钟表店B食品店C帽子店
(2)再来找一找王国里还有哪些东西是三角形的(许多小旗子,屋顶,冰淇淋,标志牌等)
(3)引导幼儿在活动室里找一找三角形的物品
3、老师小结三角形特征,使幼儿获得的知识完整化。(出示最后一张PPT)今天你们表现真棒,找到了这么多三角形的物品,他们虽然长得不一样,(不同形状,不同大小)但都有三条边,三个角;有三条边,三个角的图形都是三角形。
三.复习三角形的特征提供冰糕棒、小木棒供幼儿拼三角形,巩固认识其三角形。
【活动反思】
小班幼儿的`思维是具体形象思维,用变魔术的形式引出开头吸引孩的注意,通过变一边、摸一摸、看一看、找一找、摆一摆等,做了三角形等一系列活动,使每位幼儿在广阔的活动和认识空间在拼拼摆摆的过程中加深对三角形的认识,老师及时的小结使孩子获得知识的完整性。虽然生活中属于三角形的物体少一些,但孩子们能积极参与并观察,找到了好多的环境中的三角形。
三角形教学设计15
教学内容:
四下第60页例1、做一做,第65页第一题。
教学目标:
1.认识三角形各部分名称,知道三角形的特征。
2.会画三角形的高。
教学准备:
三角板一副。
教学过程:
一、引入
1.指名展示单元整理结构图,你对哪些内容比较感兴趣?
2.出示课题,特性是指什么?(1)说明什么?
3.你对三角形有哪些了解?边、角,高
二、新课:
1.画三角形
2.指名展示,介绍你是怎么画的?要特别注意什么?说明什么叫三角形?板书:3条边、3个角、3个顶点。由3条线段围成的图形叫三角形。怎样理解“围成”?你觉得这句话说得好吗?为什么?老师也来画一个三角形,你们看看画得对不对,说明用字母表示。
3.三角形的高:猜猜三角形的高在哪里?看书,齐读。指名说、指一指,。
4.试着画高,小组交流。指名展示交流,明确画高的方法,会描述底和高。
5.一个三角形有几条高呢?小组交流,讨论,证明你的猜想。
指名展示交流,说明三角形有3条高,
对三角形的3条高,你还有什么发现?(体验顶点与对边的相互依存性,3条高交于一点,长度不一定相等)
三、练习
1.书第60页做一做。(给出一个顶点和底边,你能画高吗?指名板演)。
2.已知一个三角形的AB边上的高3厘米,顶点C可能在哪里?
3.修理工把一块三角形的玻璃打碎成三片(如下图),现在他要到玻璃店去配一块形状完全一样的玻璃,那么最省事的办法是带第()块去。
四、课堂总结
今天我们研究了什么?
三角形的'特性(1)教学设计思考
1.让学生对单元知识有整体了解,明确要学什么。
在课前安排学生对本单元知识进行浏览,了解本单元的学习内容,并将知识点进行整理,形成简单的单元知识结构图,让学生在学习完一课后可以在单元知识结构图中补充具体的内容。让单元知识在学生头脑中形成整体的知识结构。
2.通过学生自主操作,交流讨论完成概念的认识。
认识三角形概念时,通过学生尝试画三角形,画三角形中要特别注意什么,并让学生体会“围成”描述的精准性,突破对概念本质的理解。
认识三角形的高,也是通过学生的自主阅读,自主尝试,交流讨论等方式,形成方法。采用字母标出垂足方便高的描述,让学生用语言描述高和对应底边的关系,明确高和底的相互依赖性。
3.设计开放性练习题
第一题是加深对高的意义的理解,渗透高相等的三角形形状不同。
第二题是对三角形基本特征的应用。
【三角形教学设计】相关文章:
三角形的面积教学设计08-25
《三角形的特性》教学设计09-15
《三角形的认识》教学设计10-01
《三角形的特性》教学设计05-15
三角形面积的教学设计11-30
《三角形内角和》教学设计10-02
《三角形的面积》优秀教学设计01-06
三角形的三边关系教学设计06-15
《三角形的三边关系》数学优秀教学设计09-19
《三角形的特性》教学反思07-01