人教版分数的基本性质教学设计
作为一名专为他人授业解惑的人民教师,往往需要进行教学设计编写工作,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。我们该怎么去写教学设计呢?以下是小编收集整理的人教版分数的基本性质教学设计,希望对大家有所帮助。
人教版分数的基本性质教学设计1
教学目标 :
1、理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
2、理解和掌握分数的基本性质。
3、培养学生观察、理解、献魈骄考扒ㄒ颇芰Α?/SPAN>
4、较好实现知识教育与思想教育的有效结合。
教学重点 :理解和掌握分数的基本性质。
教学难点 :能熟练、灵活地运用分数的基本性质。
教具准备 :“分数基本性质”课件,正方形纸片,彩色粉笔。
教学过程 : 一、巧设伏笔、导入新课。
1、出示课件:120÷30的商是多少?
被除数和除都扩大3倍,商是多少?
被除数和除数都缩小10倍呢?(出示后学生回答,课件显示答案)
2、在下面□里填上合适的数。
1÷2=(1×5)÷(2×□)
=(1÷□)÷(2÷4)
①想一想,你是根据什么填下面的数的?(生口答)
(课件:商不变的性质)
②商不变的性质是什么?(生口答)
③除法与分数之间有什么联系?
生答,师板书:被除数÷除数=被除数/除数
二、讨论探究,学习新知。
1、课件出示:1÷2= (怎么写)
①1/2与( )相等?你能想出哪些数?有办法怎么让它们相等吗?
让生合作探讨。
②生出示答案:1/2=2/4=4/8……
有选择填入上数。
2、引导学生证明它们相等。
①出课件:出示1个长方体,平均分成2份,得1/2,平均分成4份,得2/4……。
(课件演示)
上述演示让学生感知后,问你发现了什么?(生讨论)
②再逆向思考,观察板书和课件。
问你又发现了什么?(生讨论)
得到:(板书)分数的分子和分母同时乘上或者除以相同的数,分数的大小不变。
3、验证、补充、强调
①出示2/5=2×2/5=4/5,对吗?(验证分数的基本性质),为什么?强调“同时”(在黑板板书上用彩笔勾划强调)。
②出示3/4=3×3/4×4=9/16,对吗?为什么?强调“相同的数”。
③右边列式行吗?为什么?3/4=3×0/4×0=?补充:(0除外)板书,并出示课件补充。
④归纳出上述板书为“分数的基本性质”(课题)。
4、信息反馈、纠正、巩固。
①判断(出示课件)
A、分数的分子,分母都乘上或除以相同的数,分数的大小不变。
B、把15/20的.分子缩小5倍,分母也缩小5倍,分数的大小不变。
C、3/4的分子乘上3,分母除以3,分数的大小不变。
D、10/24=10÷2/24÷2=10×3/24×3 ( )
完成后,强调重点,加以巩固。
②完成课本108页例2(学生尝试练习)
强调运用了什么性质?课件:“分数的基本性质”醒目强调。
三、理论练习,信息综合
1、练一练
①3/5=3×( )/5×( )=9/( )
②7/8=( )/48
③4÷18=( )/( )=4×5/18×( )=2/( )
2、练习二十二1—3题。
四、课堂总结、整体感知。
(在信息综合后,重点选择性小结,形成整体),这节课我们学习了什么内容?可以应用在什么地方?这与我们学习过的什么性质有联系?
五、发散巩固、自主选择。
想一想:(选择一道你喜欢的题做)
课件:①与1/2相等的分数有多少个?想象一下,把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数。
②9/24和20/32哪能一个数大一些,你能讲出判断的依据吗
人教版分数的基本性质教学设计2
一、教学内容
分数的基本性质。(课本第75-76页的例1、例2及“做一做”、第77页练习十四的第1-3题)
二、教材简析
《分数的基本性质》是人教版小学数学教材第十册的内容之一,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。
三、教材处理
以前,教师通常把《分数的基本性质》看作一种静态的数学知识,教学时先用几个例子让学生较快地概括出规律,然后更多地通过精心设计的练习巩固应用规律,着眼于规律的结论和应用。随着课程改革的深入,教师们越来越重视学生获取知识的过程,但我们也看到这样的现象:问题较碎,步子较小,放手不够,探究的过程体现不够充分。《分数的基本性质》可不可以有别的教学思路呢?新的课程标准提出:“教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法”。根据这一新的理念,我认为教师可以为学生创设一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。所以,教师的着眼点,不能只是规律的结论和应用,而应有意识地突出思想和方法。基于以上思考,我以让学生探究发现分数基本性质的过程为教学重点,创设了一种“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想等,把这一系列探究过程放大,把过程性目标”凸显出来。
四、设计意图:
本课主要本着遵循小学数学课程标准“创设问题情境提出问题解决问题建立数学模型解释数学模型运用数学模型拓展数学模型”的指导思想而设计的。
1、通过故事创设问题情境,贴近学生生活,有利于激发学生学习兴趣。
2、从故事情境中提出问题,体现数学来源于生活。
3、小组合作学习,共同探究解决问题,让学生充分体验知识产生的过程。
4、从几组分数中分析,找到分数的基本性质,从而初步建立数学模型。
5、设计有坡度的练习,穿插师生互动,生生互动,让整个运用知识的形式活泼有趣。
6、在游戏活动中对数学知识进行拓展运用。
五、教学目标
1、知识与技能
(1)经历探索分数的基本性质的过程,理解分数的基本性质。
(2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
2、情感态度与价值观
(1)经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。(2)体验数学与日常生活密切相关。
3、过程与方法
(1) 经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分
数的基本性质作出简要的、合理的说明。
(2) 培养学生的观察、比较、归纳、总结概括能力。
(3)能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。
六、教学重点
理解分数的基本性质
七、教学难点
能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数
八、教学准备
教师:电脑课件
学生:圆纸片 长方形纸
九、教学过程:
(一)回顾复习,旧知铺垫。
课件出示复习题
1、商不变的性质
12÷3=( )
(12×10)÷(3×10)=( )
(12÷3)÷(3÷3)=( )
利用什么知识填空的?
2、除法与分数的关系
30 ÷ 120 =( )/( )
( )÷( ) =17/51
利用什么知识填空的?
(二)故事引人,揭示课题。
课件出示故事(动画):从前有座山,山上有座庙,庙里有个老和尚和一个小和尚,哦不对,是三个小和尚。小和尚最喜欢吃老和尚做的饼啦。有一天,老和尚做三块大小一样的饼,想给小和尚吃,还没给,小和尚就叫开了,“我要一块”,“我要两块”,“嘻嘻,我不要多,只要四块。”老和尚二话没说,把第一块饼平均分成4块,取出其中1块给第一个和尚;把第二块饼平均分成8块,取其中2块给高和尚。把第三块饼平均分成16块,取其中的4块给了胖和尚。小朋友,你知道哪个和尚分得多吗?
生1:胖和尚吃的多。 生2:矮和尚吃的多。 ……
师:到底谁回答得对呢?我们一起动手分饼来求证吧
1、合作探究
师:请同学们以两人一组,拿出三个大小相等的圆,分别用阴影部分表示每个和尚分得的饼(教师观察,学生小组合作,有平均分的,有涂色的,小组成员配合默契。)
师:比较一下阴影部分的大小,结果怎样?
生:阴影部分的大小相等。
师:阴影部分相等说明每个和尚分的饼相等.
师:请同学们用分数表示阴影部分
师:阴影部分相等说明这三个分数怎样?
生:三个分数相等。(随着学生的回答,老师将板书的三个分数用“=”连接。)
2、组织讨论。
师:仔细观察这三个分数什么变了,什么没有变?
让学生小组讨论后答出:它们分数的分子和分母变化了,但分数的大小不变。
师:它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。
3、比较归纳
同学们:从左往右观察,这三个分数的分子和分母是按照什么规律变化的才保证了分数的大小不变的?
集体讨论几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。(边讲边板书)
师:从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都除以相同的数,分数的大小不变。(边讲边板书)
4、揭示规律
教师小结:“刚才大家都观察得很仔细,像分数的分子、分母发生的这种有规律的变化,它的大小不变。就是我们这节课学习的新知识。(板书课题:分数的基本性质)
师:“什么叫做分数的基本性质呢?就你的理解,能把它归纳成一句话吗?(小组讨论发言)
师:刚才同学们都用自己的语言说了分数的基本性质,我们的'书上也总结了分数的基本性质,现在请打开书看到75页。看看和我们总结的有什么不同,并用波浪线表出关键的词。(如:同时,相同,0除外等)
全班讨论:为什么要规定0除外”?
引导:现在同学们知道了聪明的老和尚是用运用什么规律来分饼,既满足小和尚的要求,又分得那么公平?
(三)梳理沟通,灵活运用。
1、分数的基本性质与商不变的性质的联系。
想一想,根据分数与除法的关系,以及整数除法中商不变的规律,你能说明分数的基本性质吗?
启发学生说出它们之间的联系:
(1)分子相当于被除数,分母相当于除数;
(2)被除数和除数同时乘以或除以相同的数就相当于分子和分母同时乘以或除
以相同的数;
(3)“相同的数”中要求“0除外”;
(4)商不变相当于分数的大小不变。
2、分数基本性质的应用
(1)出示课本第76页例2,把2/3 和10/24 分别转化成分母是12而大小不变的分数。
(2)认真审题,弄清题意。
要求学生读题后归纳出题目的要求。
a.分母都变成12
b.分数的大小不变
(3)想一想:怎么化,根据什么?
过程要求:
a.学生独立思考,完成题目要求;
b.全班反馈,教师课件显示;
(四)多层练习,巩固深化。
1、完成教科书第77页练习十四的第1-3题。
(1)第1题
此题着重练习分数的相等和不等。练习时,让学生按照题目的要求涂色。
(2)第2题
此题是运用分数的基本性质比较分数大小的实际问题,学生在练习中将2/5化成4/10,或者把4/10化成2/5,再作比较,都是可以的。
(3)第3题,说出相等的分数(对口令)
此题是运用分数基本性质的游戏练习.游戏时,让学生以同桌为单位.仿照第3题的样子,一个人先说一个分数,另一个人回答一个相等的分数,然后交换先后顺序。
2、教科书76页 “做一做”
(1)由学生独立完成,然后同学交流.
(2)全班反馈,说一说思维过程.
(五)小结
教师:同学们,通过今天的学习,你有什么收获?
,题界知家数同时乘以或除以相同的数就相当于分子和分母同时乘以或除
(六)动脑筋出教室游戏(机动)
让学生拿出课前发的写有分数的纸片,要求学生看清手中的分数。与 相等的,报出自己的分数后先离场,与相等的再离场,与相等的最后离场。
十、板书设计
商不变的性质
被除数和除数同时乘或除以相同的数(0除外),商不变。
分数与除法的关系
a÷b =a/b(b≠0)
分数的基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
人教版分数的基本性质教学设计3
教学内容:
分数的基本性质。(课本第75-76页的例1、例2及“做一做”、第77页练习十四的第1-3题)
教学目标:
1、知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较、抽象、概括及动手实践的能力,进一步发展学生的思维。
2、过程与方法:经历探究分数基本性质的过程,感受“变与不变”数学思想方法。
3、情感、态度、价值观:激发学生积极主动的情感状态,养成注意倾听的习惯,体验互助合作的乐趣。
教学重点:理解和掌握分数的基本性质,会运用分数的基本性质。
教学难点:自主探究出分数的基本性质
教学准备:多媒体课件、圆形纸片、彩笔等。
教学流程:
一、复习(预设时间:5分钟)
1、
20÷5 =
( 20×3 )÷(5×3 ) =
( 20 ÷2 )÷(5 ÷2 ) =
我是根据:________ 规律。
在整数除法中,被除数和除数同时________或者________相同的数(0除外), ________不变。
2、7÷19= =( )÷( ) ( )÷8=
我是根据:________和________的关系。
根据分数与除法的关系,我们知道分子可以看成________,分数线可以看成________,分母可以看成________,分数值相当于除法中的________。
二、实践操作、自主探究(学生独立完成,预设时间:15分钟)
(一)用准备好的3张同样大小的圆形纸片,按要求完成下面各题。
1、把一张圆形纸片平均分成2 份,把其中的1份涂上颜色,涂上颜色的部分用分数来表示为( )
2、再把其中的一张圆形纸片平均分成4 份,把其中的2份涂上颜色,用分数表示为( )
3、拿最后一张圆形纸片平均分成8份,其中的4份涂上颜色,涂上颜色的部分用分数表示为( )
(二)把三张圆形纸片的涂色部分进行比较,我发现________。
用等式表示为:( )=( )=( )
(教师借助直观图组织学生进行第一个活动,借助直观图形找出相等的分数,使学生能够直观感知)
(三)1、观察第一张圆形纸片和第二张圆形纸片,平均分的'份数由( )份变成了( )份,所取的份数也由( )份变成了( )份,分子和分母都( )到原来的( ),也就由得到,即= = 由此可以得出:分数的分子、分母 。
2、反之观察,同样大小的圆形纸片,平均分的份数由( )份变成( )份,所取的份数由( )变成( ),所以,分子、分母都________。
即:= =或= =由此可得出
三、合作探究(预设时间:10分钟)
综合以上两种变化情况,讨论:用一句话概括出其中的规律?
预设:学生的回答可能不完整
例如:一个分数的分子分母同时乘或除以相同的数,分数的大小不变。
师问:这句话中,你觉得最关键的是什么?(同时,相同的数)
“ 相同的数”指哪些数?
你觉得有什么要补充的吗?(不能同时乘或除以0)为什么?
总结:分数的分子和分母同时乘上或者除以一个相同的数(零除外)分数大小不变,这叫做分数的基本性质
这就是我们今天所研究的分数的基本性质,(板书课题)
四、多层练习,深化应用
1、把的分子乘4,要使分数的大小不变,分母也要( )。
2、把的分母除以12,要使分数的大小不变,分子也要( )。
3、我能写出与大小相等而分子、分母不同的分数:()
4、连续写出多个分子、分母不同但大小相等的分数。比一比,在1分钟内看谁写得多。
5、我能根据分数的基本性质填空。
1/4=() 10/25=()= () 1/7=()/28
五、全课总结
这节课你有什么收获?(学生从知识、能力、情感方面进行自我收获总结)
六、板书设计
分数的基本性质
分数的分子和分母同时乘上或者除以一个相同的数(零除外)分数大小不变,这叫做分数的基本性质。
人教版分数的基本性质教学设计4
教学目的
1.使学生理解和掌握分数的基本性质.
2.培养学生观察、思考、动手操作和自学能力.
教学过程
一、导入新课.
故事引入:中秋节,妈妈买了一个大西瓜,分给哥哥这个西瓜的 ,(板书: ).
分给组组这个西瓜的 ,(板书: ).分给弟弟这个西瓜的 ,(板书: ).哥哥、姐姐、弟弟三个人,他们谁吃的西瓜多呢?(学生答案不一)
到底谁回答得对呢?上完这节课你们一定能得到准确的答案.
二、新课.
1.实际操作列等式证实两组分数,每组分数大小相等.
(1)教师讲解:请同学们拿出三个大小相等的圆来,分别用阴影部分表示每个圆的
.(板书: )
(2)教师提问:比较一下阴影部分的大小,结果怎样?
阴影部分相等,说明这三个分数怎样?
(随着学生回答老师将三个分数用“=”连接)
(3)教师拿出画着三条数轴的小黑板,讲:谁能在三条数轴上标出 ?
(4)教师提问:这三个分数在数轴上所表示的长度怎样?这又说明了什么?
(随着学生回答老师在三个分数间用“=”连接)
2.初步概括分数基本性质.
(1)观察两个等式,每个等式的三个分数什么变了?什么没变?
(2)同学们从左到右观察第一个等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变.
板书:
(3)谁能用一句话把这个变化规律叙述出来?
板书:分数的分子、分母都乘上同一个数,分数大小不变.
(4)从左到右观察第二个等式,这三个分数的分子、分母发生了怎样的变化,才保证了分数大小不变呢?
板书:
(5)问:谁能用一句话把这个变化规律叙述出来?
谁能用一句话把这两个变化规律叙述出来?
(板书:或除以)
3.完整分数基本性质.
填空:
教师追问:第三题( )里可以填多少个数?第4题呢?
为什么3、4题( )里可以填无数个数?
( )里填任何数都行吗?哪个数不行?(板书:零除外)
这里为什么必须“零除外”?
教师小结:我们总结的'分数的这个变化规律就是“分数的基本性质.
(板书课题:分数基本性质)
4.深入理解分数基本性质.
教师提问:分数的基本性质里哪几个词比较重要?
为什么“都”和“相同”很重要?
为什么“分数大小不变”也很重要?
为什么“零除外”也很重要?
三、课堂练习.
1.用直线把相等的分数连接起来.
2.把下列分数按要求分类.
和 相等的分数:
和 相等的分数:
3.判断下列各题的对错,并说明理由.
4.填空并说出理由.
5.集体练习.
四、照应课前谈话.
问:现在谁知道哥哥、姐姐、弟弟三个人,谁吃的西瓜多呢?
板书:
五、课堂小结.
这节课你有什么收获?
六、布置作业.
1.指出下面每组中的两个分数是相等的还是不相等的
2.在下面的括号里填上适当的数.
【分数的基本性质教学设计】相关文章:
《分数基本性质》教学设计11-08
分数的基本性质教学设计07-15
比的基本性质教学设计06-27
《分数的基本性质》的说课稿06-25
分数的基本性质说课稿11-04
《分数的基本性质》说课稿01-16
分数的意义和性质教学设计12-12
分数的性质教学反思12-15
比例的基本性质教学反思04-08