求学网>实用文>教学设计>《比的应用》教学设计

《比的应用》教学设计

时间:2024-07-31 10:00:16 教学设计 我要投稿
  • 相关推荐

《比的应用》教学设计

  作为一位不辞辛劳的人民教师,时常需要用到教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那要怎么写好教学设计呢?下面是小编帮大家整理的《比的应用》教学设计,仅供参考,希望能够帮助到大家。

《比的应用》教学设计

《比的应用》教学设计1

  掌握数量关系是正确解答应用题的关键。有时应用题的解答也有技巧,下面我们一起来看看这样一道题。

  李大伯跑1.5千米,用了11.7分钟。李大伯跑1千米平均需要多少分钟?

  同学们都知道这道题是用除法计算,

  那么是:1.5千米÷11.7分钟

  还是:11.7分钟÷1.5千米呢?老师介绍几种方法。

  一、同学们可以这样想:看要求的量的单位。这道题是求“多少分钟”,应把11.7分钟平均分到1.5千米里,看看每千米平均需要多少分钟,所以算式是:11.7分钟÷1.5千米。如果是求“李大伯平均每分钟跑多少千米”

  算式为:1.5千米÷11.7分钟

  二、同学们还可以这样想:把题中的小数转化成整数。“李大伯跑2千米,用了12分钟。李大伯跑1千米平均需要多少分钟?”很容易理解为:12分钟÷2千米

  即解答方法为:时间除以路程

  第三单元《长方体和正方体》 概念和公式归纳

  姓名

  一、概念:

  1、两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

  2、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。在一个长方体中,相对面完全相同,相对的棱长度相等。

  3、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。正方体有12条棱,它们的.长度都相等,所有的面都完全相同。

  4、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

  5、长方体或正方体6个面和总面积叫做它的表面积。

  6、物体所占空间的大小叫做物体的体积。

  7、容器所能容纳物体的体积通常叫做它们的容积。

  8、a读作“a的立方”表示3个a相乘,(即aaa)

  二、计算公式:

  长方体公式:棱长和=(长+宽+高)×4

  底面积(占地面积、横截面积、上面积)=长×宽

  侧面积(左面、右面)=宽×高 前(后)面积=长×高

  表面积=(长×宽+长×高+宽×高)×2

  没盖的表面积=长×宽+(长×高+宽×高)×2

  或=(长×宽+长×高+宽×高)×2-长×宽

  体积(容积)=长×宽×高

  长=体积÷宽÷高

  宽=体积÷长÷高

  高=体积÷长÷宽

  体积(容积)=底面积×高

  底面积=体积÷高高=体积÷底面积

  正方体公式:

  棱长和=棱长×12 棱长=棱长和÷12

  表面积=棱长×棱长×6 (任意一个面积×6)

  没盖的表面积=棱长×棱长×5

  体积(容积)=棱长×棱长×棱长=底面积×棱长

  三、体积单位换算:

  高级单位化成低级单位乘进率

  低级单位化成高级单位除以进率

  进率: 1立方米=1000立方分米=1000000立方厘米

  1立方分米=1000立方厘米=1升=1000毫升

  1立方厘米=1毫升

《比的应用》教学设计2

  一、情景引入

  出示一堆煤的情景图,图中标明煤的重量为1吨,一个炊事员说:“这堆煤计划烧40天。

  ”你们知道这句话是什么意思吗?后来在实际烧的过程中,情况发生了变化,你们想知道发生了什么变化吗?那么我们今天就一起来学习有关计划与实际比较的应用题(板书课题)

  二、教学新课

  1、教学例2在情景图上加上另一个炊事员的对话框:“由于改进炉灶,每天节省5千克。

  ”你们知道发生了什么新情况吗?根据上面的情景,你能编出应用题吗?根据学生的编的应用题,选出与例2有似的问题(1)读题,审题,分析数量关系要求改进炉灶后,这批煤可以烧多少天。

  要知道哪两个条件?我们应该先求什么?(2)你用什么方法来理解题目中的数量关系?(3)让学生尝试解答。

  2、如果把题目里的第三个已知条件和问题改成“改进炉灶后,这批煤比原计划多烧10天,每天实际烧煤多少千克?”该怎样解答?

  (1)让学生自己分析数量关系后列式解答。

  (2)讲评时让学生说出分析过程。

  (3)引导学生看一看例2与改编后的题目的.联系和区别

  3、做一做

  (1)让学生独立完成做一做。

  (2)指名板演,其余做在本子上,帮助学困生。

  (3)集体评讲。

  三、课堂练习

  1、新华乡计划25天修渠道1350米,实际每天比计划多修21米,实际只要多少天就能完成任务?要求出实际只要多少天就能完成任务,必须先算出下面的哪个问题?( )怎样算?再求哪个问题?(1)实际要修多少天?(2)实际每天修多少米?(3)提前几天修完?

  2、有一堆化肥,原计划每天生产1.8吨,20天完成,由于改进技术,每天比计划多生产0.2吨,实际多少天完成?

  四、作业:

  课本第51页的1——5题

《比的应用》教学设计3

  教学内容:

  义务教育课程标准实验教科书数学六年级下册P49、50“练一练”和练习十一的第3、4、5题

  教学目标:

  1、使学生在理解线段比例尺含义的基础上,能按给定的比例尺求相应的实际距离或图上距离。

  2、使学生在认识比例、应用比例的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略,发展对数学的积极情感。

  教学重点:

  能按给定的比例尺求相应的实际距离或图上距离。

  教学难点:

  能按给定的比例尺求相应的实际距离或图上距离。

  设计理念:

  本课时主要是学生在对比例尺含义理解的基础上,进一步体会比例尺的运用,所以在设计着重体现实用性,设计中采用不同的问题情境,才学生身边的事物说起,引导学生解决身边的数学问题,激发学生学习兴趣。再有是进一步学生加强对比例尺含义的理解,设计中,引导学生自主分析,利用知识迁移,自主尝试列式解决,有扶到放,能有效培养学生解决问题的策略水平,主动探索问题的方法,以及不断积累解决问题的经验。

  教学步骤

  教师活动学生活动

  一、复习旧知

  引入新课1、在一幅地图上扬州到南京相距5厘米,实际相距100千米,你能找出这幅地图的比例尺吗?

  2、什么叫比例尺?求比例尺时要注意哪些问题?

  学生练习,找出图上距离与实际距离,再写出比例尺。

  二、理解明确

  实践运用

  1、出示例7,明确题意

  找出明华小学到少年宫距离的线段,说出题目告诉了什么,要求什么。

  2、分析比例尺1:8000所表示的意义。

  引导分析:比例尺1:8000,说明实际距离是图上距离的8000倍。也可以理解为比例尺1:8000也就是图上距离1厘米表示实际距离80米。

  3、尝试列式

  根据对1:8000的理解你能尝试列出算式吗?

  师:交流算法,说说为什么这样算?(引导学生进一步理解不同算法,为什么会这样列式,关键是要让学生根据对比例尺的意义的理解去解决问题,帮助学生掌握不同算法以及之间的联系。)

  4、归纳、选择、

  教师允许学生按照自己的思考选择方法进行解答,重点引导学生理解和掌握用列比例式求实际距离的方法。

  5、练习

  教师引导学生思考:根据比例尺的含义,明华小学到少年宫的图上距离与实际距离的比一定与哪个比相等?你能根据这样的相等关系列出比例式?

  学生分析题意,明确已知比例尺,已知图上距离,求实际距离。

  学生分析1:8000表示的意义。

  学生根据自己的'思考自己选择合适的方法进行解答后先小组交流算法,再大组交流。

  学生可能出现的方法:

  1、5×8000=40000……2、5×80=400……

  3、5/X=1/8000……

  图上距离/实际距离=比例尺,可以用解比例的方法求出实际距离。

  学生列式5/X=1/8000并计算。

  三、尝试练习

  巩固提高1、做“试一试”。

  先选择自己合适的方法算出学校到医院的图上距离。再引导学生讨论怎样把医院的位置在图上表示出来。

  2、做“练一练”先独立解题,在组织交流

  3、做练习十一第4题

  引导学生在地图上测两地之间的距离和在地图上如何找比例尺。

  3、做练习十一第5题。

  引导学生确定合适的比例尺。在解决问题的过程中,进一步体会比例以及比例尺的应用价值。

  学生练习

  在图中表示医院的位置。

  学生练习后交流

  四、全课总结

  回顾反思1、通过本课的学习,你又掌握了什么新的本领?有哪些收获?

  2、你还有什么疑问,或你能给同学提出什么新问题?

  五、知识拓展

  激发兴趣P51“你知道吗?”

  1、收集地图资料,展示给学生观看。

  2、介绍国家基本比例尺地图。

  学生观看

  阅读后适当交流

《比的应用》教学设计4

  一、教学任务分析

  勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。《20xx版数学课程标准》对勾股定理教学内容的要求是:

  1、在研究图形性质和运动等过程中,进一步发展空间观念;

  2、在多种形式的数学活动中,发展合情推理能力;

  3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性;

  4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。

  本节《勾股定理的应用》是北师大版八年级数学上册第一章《勾股定理》第3节、具体内容是运用勾股定理及其逆定理解决简单的实际问题、在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;有些探究活动具有一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力、

  本节课的教学目标是:

  1、能正确运用勾股定理及其逆定理解决简单的实际问题。

  2、经历实际问题抽象成数学问题的过程,学会选择适当的数学模型解决实际问题,提高学生分析问题、解决问题的能力并体会数学建模的思想、

  教学重点和难点:

  应用勾股定理及其逆定理解决实际问题是重点。

  把实际问题化归成数学模型是难点。

  二、教学设想

  根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境 ,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。在教学过程中,采用一题多变的形式拓宽学生视野,训练学生思维的灵活性,渗透化归的思想以及分类讨论思想,方程思想等,使学生在获得知识的同时提高能力。

  在教学设计中,尽量考虑到不同学习水平的学生,注意知识由易到难的层次性,在课堂上,要照顾到接受较慢的学生。使不同学生有不同的收获和发展。

  三、教学过程分析

  本节课设计了七个环 《勾股定理的应用》教学设计节、第一环节:情境引入;第二环节:合作探究;第三环节:变式训练;第四环节:议一议;第五环节:做一做;第六环节:交流小结;第七环节:布置作业、

  第一环节:情境引入

  情景1:复习提 问:勾股定理的语言表述以及几何语言表达?

  设计意图:温习旧知识,规范语言及数学表达,体现

  数学的 严谨性和规范性。《勾股定理的应用》教学设计情景2: 脑筋急转弯一个三角形的两条边是3和4,第三边是多少?

  设计意图:既灵活考察学生对勾股定理的理解,又增加了趣味性,还能考察学生三角形三边关系。

  第二环节:合作探究(圆柱体表面路程最短问题)

  情景3:课本引例(蚂蚁怎样走最近)

  设计意图:从有趣的生活场景引入,学生探究热情高涨,通过实际动手操作,结合问题逆向思考,或是回想两点之间线段最短,通过合作交流将实际问题转化为数学模型从而利用勾股定理解决,在活动中体验数学建模,培养学生与人合作交流的能力,增强学生探究能力,操作能力,分析能力,发展空间观念、

  第三环节:变式训练(由圆柱体表面路程最短问题逐步变为长方体表面的距离最短问题)

  设计意图:将问题的条件稍做改变,让学生尝试独立解决,拓展学生视野,又加深他们对知识的理解和巩固。再将圆柱问题变为正方体长方体问题,学生有了之前的经验,自然而然的将立体转化为平面,利用勾股定理解决,此处长方体问题中学生会有不同的做法,正好透分类讨论思想。

  第四环节:议一议

  内容:李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,《勾股定理的应用》教学设计(1)你能替他想办法完成任务吗?

  (2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?

  (3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?

  设计意图:

  运用勾股定理逆定理来解决实际问题,让学生学会分析问题,正确合理选择数学模型,感受由数到形的'转化,利用允许的工具灵活处理问题、

  第五环节:方程与勾股定理

  在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有《勾股定理的应用》教学设计一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多 少尺?《勾股定理的应用》教学设计意图:学生可以进一步了解勾股定理的悠久历史和广泛应用,了解我国古代人民的聪明才智;学会运用方程的思想借助勾股定理解决实际问题。、

  第六环节:交流小结内容:师生相互交流总结:

  1、解决实际问题的方法是建立数学模型求解、

  2、在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题、

  3、在直角三角形中,已知一条边和另外两条边的关系,借助方程可以求出另外两条边。

  意图:鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史、《勾股定理的应用》教学设计第七环作业设计:

  第一道题难度较小,大部分学生可以独立完成,第二道题有较大难度,可以交流讨论完成。

《比的应用》教学设计5

  教具准备:

  口算卡片、小黑板。

  教学过程:

  一、复习

  1.做练习三的第6题。

  教师出示口算卡片,指名让学生口算,全班集体订正。

  二、新课

  教学分步检验应用题的方法。

  教师用小黑板出示:三年级有43名学生,平均每人每学期用4本练习本,2个学期共用练习本多少本?

  教师提问:解答这道题可以先算什么,再算什么?怎样列式计算?

  教师指名让学生说一说所列的算式和每一步算的是什么。

  教师提问:还可以怎样算?怎样列式?

  教师同样指名让学生说一说所列的算式和每一步算的是什么。

  教师:怎么知道我们解答的对不对呢2这就需要对解答的过程进行检验。怎样检验呢?

  常用的方法是:按照原来的题意,依次检查每一步列式和计算,看是不是正确。现在让我们来检验一下上面这道题的解答是否正确。

  教师和学生一起讨论这道题已知什么,要求的是什么,可以先算什么,再算什么,所列的算式是什么等。每解决一个问题看一看与前面解答的是否一样,直到全部解答完。

  教师让学生翻开书第11页,自己解答题目:四年级有43名学生,2个学期共用练习本344本,平均每人每学期用多少本7做完后,让学生自己检验。

  三、课堂练习

  1.做练习三的第7题。

  读题后,指名让学生说一说这题要求的是什么。使学生明确这题要求的是新增加5台冰箱一年的'用电数,即多用电的数。然后让学生自己解答并且检验。检验之后,让学生说一说检验的方法。如果学生还没有掌握,教师可以带着集体进行检验。

  第一单元

  2.做练习三的第8题。

  让学生独立做题并且进行检验。

  3.做练习三的第9题。

  先让学生独立解答。然后教师提问:怎样把上面这道题改编成用除法解答的应用题

  呢?教师可以启发学生回想上一节课的第4题里的两小题之间的联系,然后问:想一想,怎样把条件和问题加以改变?指名让学生说一说;教师可以根据学生的意见把所改变的题目写在黑板上:15辆汽车一年可以节约10800千克汽油,平均每辆汽车1个月节约汽油多少千克?之后让学生自己解答,集体订正。

  4.做练习三的第10题。

  让学生自己解答,教师巡视,集体订正。

  5.选做练习三的第11*、12*题。

  这两题是选做题,教师可以让学有余力的学生试着做,教师个别辅导。

  第11*题,可启发学生想:根据“每组人数相等。”这个条件联系前面的已知条件,就可以确定是把180个同学平均分成了9组(5+4组),每一组的人数是180÷(5+4)=20(个)。要求第一批去了多少个同学,就是求5个组是多少人,即20×5=100(个)。所以这一题的解法是:180÷(5+4)×5=100(个)。

  第12*题,可启发学生想:要想求出1台碾米机8小时碾米多少千克,就要先知道1台碾米机1小时碾米多少千克。已知4台碾米机3小时碾米4860千克,求1台碾米机1小时碾米多少千克,这是我们刚学过的连除应用题,我们会解答。求出1台碾米机1小时碾米400千克后,再加算一步乘以8,就可算出1台碾米机8小时碾米3200千克。所以,这一题的解法是:4800÷4÷3×8=3200(千克)或者4800÷3÷4×8=3200(千克)。

  教学内容:

  教科书第11页分步检验应用题的方法,练习三的第6—10题。

  教学目的:

  (1)通过练习使学生进一步理解连乘、连除应用题的数量关系,掌握解答方法。

  (2)使学生初步学会分步检验应用题的方法,培养学生在解答应用题时进行检验的良好习惯。

《比的应用》教学设计6

  教学目标

  (一)使学生学会分析解答有关倍数的三步应用题、

  (二)使学生进一步学会用线段图表示已知条件和问题、

  (三)提高学生分析能力、

  教学重点和难点

  用线段图帮助理解题意,分析数量关系,掌握解题思路既是重点,又是难点、

  教学过程 设计

  (一)复习准备

  1、板演:

  华山小学三年级栽树56棵,四年级栽的树是三年级的2倍、三、四年级一共栽树多少棵?

  2、全班同学根据线段图提问题、

  先编题,再列式、

  (1)一步计算的应用题、

  有篮球20个,排球是篮球的3倍、有排球多少个?

  20x3=60(个)

  (2)两步计算的应用题、

  有篮球20个,排球是篮球的3倍、篮球比排球多多少个?

  20x3—20=40(个)

  有篮球20个,排球是篮球的3倍,篮球、排球共有多少个?

  20x3+20=80(个)

  编题后把问题在线段图上表示出来、

  订正板演题时要说出解题思路、

  (二)学习新课

  1、新课引入

  把复习题增加一个条件,即“五年级栽的比三、四年级栽的总数少10棵”,把问题改成“五年级栽树多少棵”,像这样的问题这就是我们今天要研究的(板书:应用题)

  2、出示例5

  华山小学三年级栽树56棵,四年级栽树是三年级的2倍,五年级栽的比三、四年级栽的总数少10棵、五年级栽树多少棵?

  (1)读题,理解题意、读出已知条件和问题,并和复习题比较有什么地方不同

  (2)引导学生用线段图表示题中的条件和问题、

  三年级栽56棵四年级栽的是三年级的2倍

  五年级栽棵10棵

  (3)学生独立思考,试算、

  (4)集体讨论、互相交流,说思路、

  教师提出要求五年级栽树多少棵,根据题里给的条件能直接算出来吗?要先算什么?再算什么?引导学生分析、叙述自己的思路、

  (求五年级栽树多少棵,必须知道三、四年级栽多少棵、三年级栽树的棵数已经知道,四年级栽树棵数没直接告诉,所以先求四年级栽多少棵,算式为56x2=112(棵),再求三、四年级的总数,算式为56+112=168(棵)、因为五年级栽的棵数比三、四年级栽的总数少10棵,所以最后用总数减去10棵:168—10=158(棵)

  随着学生的回答,板书:

  (1)四年级栽多少棵?

  56x2=112(棵)

  (2)三、四年级共栽多少棵?

  56+112=168(棵)

  (3)五年级栽多少棵?

  168—10=158(棵)

  答:五年级栽158棵、

  还有不同的想法吗?

  如果题中五年级栽树的条件改为“五年级栽树的棵数比三、四年级栽的总数多10棵”,怎样求五年级栽的棵数?

  (用三、四年级栽的总数加10棵,168+10=178(棵)、)

  (5)求三、四年级栽树的总数还有别的比较简便的方法吗?

  提示:从倍数关系上考虑,谁是1倍数?三、四年级的总数是几倍数?怎样求三、四年级的总数?

  (四年级栽的是三年级栽的2倍,三年级栽的是1倍数,四年级栽的是2倍数,三、四年级栽的总数是 2+1=3倍数:56x(2+1)=168(棵),然后再加上10棵,就是五年级栽的棵数:168+10=178(棵)、)

  小结

  解答应用题要认真审题,理解题意是基础,分析数量关系是解题的关键、采用什么方法分析要因题而异,由于解题思路的不同,解题方法也不一样,解题步骤也不一样,因此要灵活运用、

  (三)巩固反馈

  1先画图,再解答、

  学校举行运动会、三年级有35人参加比赛,四年级参加的人数是三年级的3倍,五年级参加的人数比三、四年级参加的`总人数多12人,五年级参加比赛的有多少人?

  2、看图解答、

  3、条件有变化、先讨论、独立解答,再集体交流、

  学校里有柳树36棵,松树比柳树少12棵,杨树的棵数等于松树和柳树总数的4倍、有杨树多少棵?

  订正时可以明确,题目要求“杨树有多少棵?”这句问话本身数量关系不明显,因此可以根据已知条件的关系找出新的数量,直到所求的问题、

  (四)全课总结

  引导学生说出怎样分析应用题的数量关系、

  (五)作业

  练习五第1~3题、

  课堂教学设计说明

  本节课三步应用题是在学生学过的有关倍数的两步应用题的基础上发展的,两步应用题增加一个条件,改变其问题,就是三步应用题、本节课仍以思路教学为重点,通过画线段图,学会分析数量关系,以掌握解题思路,提高分析问题的能力、本节课着重体现以下几个方面:

  1、培养学生画线段图分析数量关系的能力、画线段图虽不作教学要求,但它比文字叙述的题要具体的多,在分析数量关系中,恰当地运用线段图是帮助学生由形象思维过渡到抽象思维的桥梁,因此无论是复习、新课、练习都十分重视画图、看图分析的训练、

  2、重视学生叙述思维过程的练习、应用题不但要注重结果的正确性,还要重视思维过程的逻辑性,因此解答应用题要让学生说出自己是怎么想的,口述出思维过程,这也是培养学生逻辑思维能力的手段、

  3、注重知识间的联系、发展和变化、把复习题改变条件可使两步题变成三步题,条件变化了,解题方法也变了,让学生在分析不同的数量关系中,掌握解题思路,达到举一返三的目的

  4、设计不同层次的练习、先基本、后变化、先易后难,把说思路、画线段图贯穿于全课中、让学生通过不同的练习,达到熟悉数量关系,掌握不同的思路,提高分析、解答应用题的能力、

  板书设计

  例5 华山小学三年级栽树56棵,四年级栽的棵数是三年级的2倍,五年级栽的比三、四年级栽的总数少10棵、五年级栽树多少棵?

  (1)四年级栽多少棵?

  56x2=112(棵)

  (2)三、四年级共栽多少棵?

  56+112=168(棵)

  (3)五年级栽多少棵?

  168—10=158(棵)

  答:五年级栽158棵、

  简便算法:

  56x(2+1)=168(棵)

  168—10=158(棵)

  练习、看图解答

  (1)小强集邮多少张?

  45x5—20

  =225—20

  =205(张)

  (2)两人共集邮多少张?

  45+205=250(张)

  答:两人共集邮250张、

《比的应用》教学设计7

  教学目标:

  知识与技能:使学生能够掌握按比例分配应用题的结构特点,解题思路和解题技巧,并能运用到日常生活中去。

  过程与方法:培养学生运用知识进行分析、推理等思维能力,情感态度与价值观:渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。

  教学重点:掌握按比例分配应用题的结构特点和解题思路。教学难点:正确分析解答按比例分配应用题。教法:启发引导法,演示法学法:观察比较,合作交流。教学准备:多媒体课件。教学过程:

  一、复习解决下面各题:化简

  27千克:750克千米:800米求下面各比的比值

  66学生独立完成,抽生板演,集体订正。

  二、情景导入学生自由讨论

  1、一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml。你知道这瓶液体是怎样配制成的吗?

  2、我们在以前的学习中学过平均分,平均分的结果有什么特点?在日常生活中,为了合理分配,往往需要把一个数量分成不等的几部分,把一个数量按照一定的比来进行分配,这种方法通常叫做按比例分配。

  三、新授新知教学

  (1)给出课件出示课本例2:某种清洁剂浓缩液的`稀释瓶,瓶子上标明的比表示浓缩液和水的体积之比。按照这些比,可以配制出不同浓度的稀释液。那么,现在按1:4的比配制了一瓶500ml的稀释液,其中浓缩液和水的体积分别是多少?

  (2)引导学生弄清题意后,让学生自己理解:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液,浓缩液和水的体积按1:4进行分配)

  (3)让学生理解:“浓缩液和水的体积1:4。”(就是说在500ml的稀释液中,浓缩液占一份,水的体积占4份,一共是五份,浓缩液占稀释液的五分之一,水的体积占稀释液的五分之四)(4)可不可以求出两种各多少ml?怎么求?(引导学生进行解题并根据学生解题过程板书)例2:稀释液平均分成的分数:1+4=5每份是:500÷5=100(ml)浓缩液的体积:100×1=100(ml)

  水的体积:500×4=400(ml)

  答:稀释液100ml,水400ml。

  这是一种方法,那么大家再思考一下,我们刚刚学过分数的乘法,这个题目可不可以运用分数的乘法来解。

  师:把我们学过的比转化成分率,怎样来做?

  生:浓缩液和水共有5份,那么浓缩液占其中的1/5,水占4/5、可以写成:浓缩液的体积:500×1/5=100(ml)

  水的体积:500×4/5=400(ml)

  答:稀释液100ml,水400ml。课件显示出来,让学生进一步理解。

四、巩固提高(幻灯片出示)

  做一做第1、2题,学生独立完成,抽生板演,集体讲评。

  五、全课总结

  今天我们学到了什么?

  六、家庭作业

  教材第50页,练习十二1-3题。

  教学反思:

  本节课是分数除法学习章节的最后一个课时,知识是在分数除法基础上的再一次加深,学生掌握的前提需要在分数除法的学习上下很大的功夫。本班学生分数的除法学习时基础较弱,需大量练习作为巩固。对于后进生的鼓励和关心需要花更大的功夫。六年级学生思维活跃,需要老师上课具备启发性,从而让学生进一步做到积极思考和探索新知的学习态度。

《比的应用》教学设计8

  教学内容:比例尺知识与技能:使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,能根据比例尺求出图上距离或实际距离。

  情感态度与价值观:学会用比例尺知识解决问题,培养学生解决实际问题的.能力。

  教学重点、难点:理解比例尺的含义,能根据比例尺求出图上距离或实际距离。

  教学过程:

  一、导入(略)

  二、探索新知

  1、教学比例尺的意义

  (1)、教师讲解:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,我们给它起一个名字叫做“比例尺”。(板书)

  (2)、教师指导学生看教科书,让学生说出它们的比例尺各是多少,表示什么意思。

  (3)、教师指出:比例尺与一般的尺不同,这是一个比,不应带计量单位。

  2、线段比例尺与数值比例尺的改写。出示例1:把教材第49页线段比例尺改写数值比例尺。

  (1)、说一说方法。

  (2)、改写图上距离:实际距离=1㎝:50㎞=1㎝:5000000㎝ =1:5000000

  3、教学根据比例尺求图上距离或实际距离。教学例2出示例2,指名读题,并说出题目已知什么,要求什么。教师板书解答过程

  解:设地铁1号线的实际距离为Xcm。 10:x=1:500000 X=500000×10 X=5000000 5000000㎝=50㎞巩固练习。做第52页的“做一做”。指名做,集体订正。

  三、布置作业

  完成《练习册》第19页的练习。

《比的应用》教学设计9

  教学目标

  1. 使学生理解三步计算应用题的数量关系,知道用分析法解答三步计算应用题,数学教案-三步计算应用题。

  2. 能正确列式解答,掌握检验方法,进行检验。

  3. 掌握解答应用题的步骤。

  4. 养成认真审题、独立思考的学习习惯。

  重点

  难点

  学会分析数量关系。

  灵活检验。

  课型、主要教学方法

  新授课 讲解法 讨论法 练习法

  缙云实验小学 陈耀红

  操 作 过 程

  板书设计: 一般的三步计算计算的应用题

  三年级:

  四年级:

  五年级:

  少8棵

  (1) 四年级种树多少棵? 36×2=72(棵)

  (2) 三、四年级一共种树多少棵? 72+36=108(棵)

  (3) 五年级种树多少棵? 108-8=100(棵)

  教师活动 预计时间(18 )分

  学生活动 预计时间( 22 )分

  一. 复习旧知.

  1. (大屏幕出示准备题):同学们种树,三年级种了36课,四年级种的棵数三年级的2倍,三、四年级共种了多少棵?

  2. 指名读题.

  3. 板书综合算式.

  4. 还有其他解法吗?

  二. 新授

  1. 导入课题.

  出示例1: (把准备题中的三、四年级一共种树多少棵?改成五年级种的棵数比三、四年级种的'棵数少8棵,五年级种树多少棵?)----引入课题。

  2. 指导理解题意,小学数学教案《数学教案-三步计算应用题》。

  (1)指名说条件和问题。

  (2)评议所画的线段图是否符合题意,修改。

  3. 指导探求解题思路。

  (1)、问:要求“五年级种多少棵”必须知道什么条件?

  (2)、指名回答。

  小结解题思路。

  (3)、出示解题步骤。

  4、 指导尝试解答。

  (根据回答板书)

  板书综合算式.

  5、教学检验方法。

  问:你有什方法对这道题进行检验?

  小结:(1)把得数当作已知数再算一遍.

  (2)换一种方法解答.

  三. 试一试.

  出示(例1:缺少问题)

  要求:提出一个用不同方法解答的问题。

  四、巩固练习。

  1. 解题思路训练。

  2. 针对性练习

  3、总结.

  五、检测练习.

  1. 读题,画出线段图.

  2. 说出解题思路.

  3. 列式解答.

  4.可能有:36×(2+1)

  1.齐读课题

  2. 仔细读题.

  (1) 说说题中的条件和问题.

  (2) 根据条件在准备题已画的线段图上进行修改。

  3.探求解题方法.

  (1)、讨论,回答。

  (2)、同桌互说解题思路,指名说。

  4.尝试解答。

  (1) (1)分步列式

  (2)综合列式

  (3)还有什么方法?

  5.想一想:有那些方法可以进行检验?

  说出方法。

  尝试练习.

  (1)提出问题。

  (2)列式解答

  (3)集体评议.

  读题并填空。

  (1) 小明有12张邮票,小青的邮票张数是小明的3倍,小华的邮票比小明和小青的总数多8张,小华有几张?想:要求小华有几张邮票,要知道

  ( )和( )各有几张邮票,已知( )

  ,所以要先求出 ( ) 的邮票张数,再求出 ( ),最后求( ) 。

  完成练一练1。

  1.板演。

  2.校对,集体讲评 。

  编应用题。(三

  数学教案-三步计算应用题

《比的应用》教学设计10

  一、教材分析

  本节课是必修三第十三章《电磁感应与电磁波初步》第三节的内容,本节内容把电与磁彻底的联系在一起。从物理学的角度看,电磁感应在电磁学中的地位,正是由于电磁感受现象的发现,把人类社会带入了电气化时代,体现了“划时代的发现”。另外本课的实验部分是在于引导学生通过活动和思考来主动地获得知识。教科书所呈现的实验既为本节研究感应电流的产生条件提供了实验情景,又成为后续楞次定律教学的基础。

  二、学情分析

  学生对闭合电路的部分导线切割磁感线能产生电流,在初中已经有一定的认识,但在空间想象能力、问题本质的分析方面还较为薄弱。因此,在教学中国从学生的已有知识出发,通过学生自己的自主学习、探究实验、产生问题等学习方法,解决问题得出产生感应丁柳德条件的结论。

  三、基于核心素养的教学目标设计

  物理观念:知道感应电流的产生条件及相应实验方法;知道用感应电流的产生条件去判断回路中是否产生感应电流。

  科学思维:通过物理学史的学习,体会电磁相互转化的思想。

  科学探究:通过学生实验,进行实验观察、归纳分类,达到能够判断回路中磁通量如何变化和因为什么而变化的目的。

  科学态度与责任:领会科学家对自然现象、自然规律的探究,以科学不怕困难、勇于面对挫折的坚强意志激励自己。体会物理与生产生活的紧密联系。

  四、重、难点

  重点:通过实验观察和实验探究,理解感应电流的产生条件。

  难点:感应电流的产生条件。

  五、教学方法

  讲授法、探究实验法

  六、教学过程

  (一)新课引入

  (二)划时代的发现

  1.奥斯特:电生磁

  (动图展示奥斯特实验)

  奥斯特发现的电流的磁效应,震动了整个科学界,它证实电现象与磁现象是有联系的。

  电能生磁,根据对称性,为什么不能用磁来生电呢?

  法拉第他就坚信磁也能生电。

  2.法拉第:磁生电

  于是从1822年开始进行了将近十年的实验。直到1830年8月他发现给一个线圈通电和断电的瞬间,另一个线圈中出现了电流。

  于是,他又设计并动手做了几十个实验,发现了各种深藏不露的各种"磁生电"的现象。从实验现象中领悟到:“磁生电”是在一种变化、运动的过程中才能出现的效应。总结起来是这么五类:

  ①变化的电流

  ②变化的磁场

  ③运动的恒定电流

  ④运动的磁铁

  ⑤在磁场中运动的导体

  并且他把这些现象命名为电磁感应。在这种情况下产生的电流叫做感应电流。

  小结:

  法拉第的这一伟大发现完善了电与磁的内在联系,所以便有电磁学这一门学科的诞生。

  (三)产生感应电流的条件

  法拉第发现了电磁感应现象,那么具体产生感应电流的.条件是什么呢?

  1、实验探究:感应电流产生的条件

  导体切割磁感线,会在闭合回路中产生感应电流

  2、实验验证

  (1)ab静止的时候,电路中没有感应电流;

  (2)ab沿着磁感线运动的时候,电路中没有感应电流;

  (3)仅有ab切割磁感线的时候,才会产生感应电流。

  ·分析:ab切割磁感线时,磁场的大小和方向没有变化,变化的只有电路abcd的面积。

  那么,与磁场相关的哪个物理量发生了变化呢

  我们学过磁通量的的表达式是φ=BS,闭合电路abcd的面积发生了变化,也就是说,穿过电路abcd的磁通量发生了变化。

  那么,感应电流的产生是否与磁通量的变化有关呢

  下面我们通过实验来研究这个问题。

  3、实验探究1:

  磁铁插入、抽出

  实验操作:指针偏转情况

  磁铁插入——指针偏转

  磁铁静止在线圈中——指针静止

  磁铁拔出——指针偏转

  或停在线圈中时,电流表指针如何动作?

  如图,线圈A通过变阻器和开关连接到电源上,线圈B的两端连接到电流表上,把线圈A装在线圈B的里面。观察下面几种情况下线圈 B中是否有电流产生。通过动图依次观察实验。

  开关和变阻器的状态——指针偏转情况

  开关闭合瞬间——指针偏转

  开关断开瞬间——指针偏转

  开关闭合时,滑动变阻器不动——指针静止

  开关闭合时,迅速移动滑动变阻器的滑片——指针偏转

  4、归纳总结

  请你根据实验现象总结,什么情况下闭合导体回路中产生感应电流。

  (动图展示线圈A中的磁感线条数变化的过程)

  磁场强弱的变化我们可以通过磁感线的条数来观察,观察动图可以看到闭合开关穿过B的磁感线从无到有;滑动滑片,穿过B的磁感线的条数不断的变化;断开开关,穿过B的磁感线从有到无。这种情况下,根据公式φ=BS,B的面积没有改变,但是磁场感应强度B变化了,所以说穿过线圈 B的磁通量也发生了变化,线圈B中有感应电流。

  5、得出结论

  以上实验及其他事实表明∶

  当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中就产生感应电流。这就是产生感应电流的条件。

  (四)电磁感应现象的应用

  ·发电机

  1831年圣诞节前夕的一次科学报告会上,向大众展示了人类历史上最早的发电机——法拉第圆盘发电机,开辟了人类社会的电气化时代。

《比的应用》教学设计11

  教学目标

  1、巩固酸、碱、盐的组成、命名和分类的知识。

  2、巩固有关酸、碱、盐化学性质及有关化学方程式的书写,并加深对某些反应的.认识。

  3、通过典型例题的讨论、分析,牢固掌握第七章知识,初步形成解题技能1.知识点回顾形成知识网络;

  2.知识的应用,1.酸的通性

  (1)酸与指示剂作用:。

  以下以化学方程式表示,并注明反应基本类型:

  2.碱的通性

  (1)碱与指示剂作用:。

  以下以化学方程式表示:

  3.盐的性质

  用化学方程式表示,并注明反应基本类型:

  4.金属活动顺序表及应用

  (1)活动性由强到弱的顺序

  (2)应用

  5.酸碱盐溶解性

  6.复分解反应的条件

  反应物:参加反应的物质一般要可溶,除非与酸反应。

  生成物:。

  三、总结与反思

  几种重要离子的检验

  离子

  使用的试剂

  现象

《比的应用》教学设计12

  教学内容:

  人教版小学六年级数学第三单元第三节

  教材分析:

  《比的应用》是人教版小学数学六年级第十一册第三单元49页的内容。这部分内容是在学生学习了比与分数的联系,已掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关实际问题的一个课例,掌握了《比的应用》的解题方法,不仅能有效地解决实际生活、现实工作中把一个数量按照一定的比进行分配的问题,也为以后学习“比例”奠定了基础。

  学情分析:

  学生在学习了比的意义,比的基本性质,分数的意义等知识后,能将知识融会贯通,能将平均分与不平均分份数的知识联系和应用起来,使学生完全能找到按比例分配的方法。教师只起到启发,点拨和深化引导的作用。

  教学目标

  1、运用比的意义解决按照一定的比进行分配的实际问题;

  2、在探索学习的过程中使学生掌握按比例分配问题的特征,能运用按比例分配的知识解决生活中的实际问题。

  教学重点和难点:

  能运用比的意义解决按一定比例进行分配的实际问题。

  教学过程

  一、复习旧知 情景导入

  (出示课件)

  六年级共有38人,其中,男,生和女生的人数比是7:12,男,生是女生的人数的,女生是男生的人数,男生是全班人数的,女生是全班人数的xxx。

  【设计意图】一条简单的现实生活信息,不但使学生体会到数学与生活的联系,激发了学生的学习兴趣,而且培养了学生分析问题、解决问题的能力。为学习新知做铺垫

  2、同学们请看大屏幕:这里有哪些数学信息?请你读一读。(课件图片出示)

  (1)地球上的淡水含量与地球上水总量的比为3:100。

  (2)安利洗涤剂与水的正常比是1:8。

  (3)我们喝的`鲜橙多中橙汁与水的比是1:9。

  (5) 妈妈做米饭时米与水的比是1:3。

  (5)一种咖啡奶,咖啡和奶的比为2:9

  3、生活中平均分配的问题:

  学校把种植42棵小树苗的任务分配给六年级人数相等的两个班,怎样分配才合理?

  4、李明与黄华合办股份制食品有限公司,李明出资20万元,黄华出资30万元,两年后盈利150万元,怎样分配利润才合理?

  师板书:按比例分配

  【设计意图】学生能从三个例题中体会平均分配和按比例分配的实际意义。留下悬念,激发学生的学习兴趣。

  二、合作学习 自主探索

  (一)理解比例分配的意义

  把一个数量按照一定的比例来分配。这种分配方法通常叫做按比例分配。

  (二)学习例2:(出示例2):

  某种清洁剂是浓缩液和水按1:4的体积比配置的。现有一瓶500毫升的这种清洁剂,其中浓缩液和水的体积分别是多少?

  1、 指名读题、理解题意

  2、 学生尝试:请同学在练习本上尝试解答一下,再在小组内进行交流

  3、生汇报:不同做法的两名同学到前面板演,并要求板演的学生说出这样解答的道理

  解法1:总份数 1+4=5 解法2 :总份数 1+4=5 每份是500÷5=100(毫升) 浓缩液有 500×1/5=100(毫升)

  浓缩液有100×1=100(毫升) 水 有 500×4/5=400(毫升)水有 100×4=400(毫升)

  答:浓缩液有100毫升,水有400毫升。

  4、 提问:这两名学生解答的是否正确,要求学生说出每步求的是什么

  5、比一比:比较一下这两种解法有什么不同,与我们学过的哪些知识有关(可在小组内交流)

  学生汇报总结:

  方法1是按平均分的份数进行计算的:先算出每份的体积,再分别算出浓缩液和水的体积。

  方法2是按分数的意义进行计算的:先找出各部分数占总数的几分之几,再根据分数乘法的意义,分别算出浓缩液和水的体积。

  6、这道题做得对不对呢?我们怎么检验?

  提问后老师总结:把计算出来的浓缩液的体积加上水的体积是否等于500;也可以把计算结果去比,看是否是1:4。

  强调:检验是我们解决问题的重要环节,他能告诉我们自己的解答是否正确,能帮助我们养成对自己做的每一件事都认真负责的学习态度。

  (三)老师总结并强调计算方法:首先看清题里的条件给的是哪几个量的比再看题中给的量是否是这几个量的和,而后在选择合适的计算方法。并养成验算的好习惯。

  (四)质疑问难

  四、巩固新知 反馈练习,

  (1)填空:

  1)把20根小棒按2:3的比例分成两堆,一堆( )根,另一堆( )根。

  2) 把20根小棒按1:3的比例分成两堆,一堆( )根,另一堆( )根。

  (2)六(1)班要举行联欢会,班委决定买12千克水果,据调查,爱吃苹果的同学人数和爱吃梨的人数的比2∶1。请你算一算,苹果和梨分别买多少千克

  (3)生活中的问题

  李明与黄华合办股份制食品有限公司,李明出资20万元,黄华出资30万元,两年后盈利150万元,怎样分配利润才合理?

  要求:独立完成,请学生口头说,教师板演,并说清“比”是怎么得来的。

  【设计意图】此题为按比例分配问题的一个变式,解答开始上课时的疑问。引导学生找出部分量的比。让学生在解决实际问题的过程中感受学习的乐趣和价值。

  2)一种什锦糖是由奶糖、水果糖和酥糖按照2︰5︰3混合成的。要配制这样的什锦糖500千克,需要奶糖、水果糖和酥糖各多少千克?

  五、谈收获,课堂总结。

《比的应用》教学设计13

  教学要求:

  教学目标:

  1、让学生经历解决生活中实际问题的过程,使学生掌握用方程解答“已知一个数的几分之几是多少,求这个数”的应用题;

  2、通过分析解决问题的学习活动,培养学生分析问题和解决问题的能力。

  教学重点:找准单位“1”,找出数量关系。

  教学难点:能正确地分析数量关系并列方程解答应用题。教学过程:

  一、谈话激趣,复习辅垫

  1.找出单位“1”,写出数量关系式

  (1)杨树的棵数是柳树的1/3.

  (2)红花朵数的1/2相当于黄花的朵数。

  (3)白兔只数的5/6是黑兔的只数。

  (4)一批化肥运走3/8。

  2.师生交流

  师:同学们,你们知道在我们体内含量最多的物质是什么吗?(水)对,水是我们体内含量最多的物质,它对我们人体是至关重要的,是构成我们人体组织的主要成分。那么你们了解体内水分占体重的几分之几吗?

  师:老师查到了一些资料,我们一起来看一下。(课件出示)师:你能算出自己体内的水分吗?(学生回答)师:一儿童的体重是35千克,你们能帮他算出他体内水分的质量吗?生回答后出示:儿童的体重×4/5=儿童体内水分的重量

  35×4/5=28(千克)

  师:谁还能根据另一个信息写出等量关系式?成人的体重×2/3=成人体内的水分的重量

  3.揭示课题

  师:同学们以前的知识学得可真好,如果老师告诉你们小朋友们体内有28千克水分,你们能算出他的体重吗?这就是我们今天要来研究的分数除法应用题。

  二、引导探究,解决问题

  1.课件出示例题。

  2.合作探究

  师:同桌互相商量一下,要解决这个问题,数量关系是怎样的?用自己喜欢的方式把它表示出来并解答出来。

  3.学生汇报

  生1:根据数量关系式:儿童的体重×4/5=儿童体内水分的重量,再根据关系式列出方程进行解答。(师随着学生的发言随机出示课件)生2:直接用算术方法解决的,知道体重的4/5是28千克,就可以直接用除法来做。

  28÷4/5=35(千克)

  4.比较算术做法与方程做法的优缺点。

  5.对比小结

  和前面复习题进行比较一下,看看这道题和复习题有什么异同?

  (1)看作单位“1”的数量相同,数量关系式相同。

  (2)复习题单位“1”的`量已知,用乘法计算;例1单位“1”的量未知,可以用方程解答。(或用除法计算)

  (3)因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位“1”,根据单位“1”是已知还是未知,再确定是用乘法解还是方程解。

  6.试一试:一条裤子的价格是75元,是一件上衣的2/3。一件上衣多少元?

  问:这道题已知什么?求什么?谁和谁在比?哪个量是单位“1”?单位“1”是已知还是未知的?

  根据学生回答画线段图。根据题中的数量关系找学生列出等量关系式。学生根据等量关系式列方程解答(找学生板演,其他学生在练习本上做)。

  师:这道题你还能用其它方法解答吗?

  (根据分数除法的意义,已知两个因数的只与其中一个因数,求另一个因为用除法计算。)

  三、联系实际,巩固提高1.练一练:

  (1).小明体重24千克,是爸爸体重的3/8,爸爸体重是多少千克?

  (2).一个修路队修一条路,第一天修了全长的2/5,正好是160米,这条路全长是多少米?

  2.对比练习

  (1)一条路50千米,修了2/5,修了多少千米?

  (2)一条路修了50千米,修了2/5,这条路全长是多少千米?

  (3)一条路50千米,修了2/5千米,还剩多少千米?

  四、全课小结畅谈收获

  (教师强调:分析应用题数量关系比较复杂,因此在解答分数应用题时要注意借助线段图来分析题中的数量关系,解答后要注意检验。)

《比的应用》教学设计14

  一、素质教育目标

  (一)知识教学点:使学生会用列一元二次方程的方法解决有关增长率问题.

  (二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识.

  二、教学重点、难点

  1.教学重点:学会用列方程的方法解决有关增长率问题.

  2.教学难点:有关增长率之间的数量关系.下列词语的异同;增长,增长了,增长到;扩大,扩大到,扩大了.

  三、教学步骤

  (一)明确目标.

  (二)整体感知

  (三)重点、难点的学习和目标完成过程

  1.复习提问

  (1)原产量+增产量=实际产量.

  (2)单位时间增产量=原产量×增长率.

  (3)实际产量=原产量×(1+增长率).

  2.例1 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少?

  分析:设平均每月的增长率为x.

  则2月份的产量是5000+5000x=5000(1+x)(吨).

  3月份的产量是

  =5000(1+x)2(吨).

  解:设平均每月的增长率为x,据题意得:

  5000(1+x)2=7200

  (1+x)2=1.44

  1+x=±1.2.

  x1=0.2,x2=-2.2(不合题意,舍去).

  取x=0.2=20%.

  教师引导,点拨、板书,学生回答.

  注意以下几个问题:

  (1)为计算简便、直接求得,可以直接设增长的百分率为x.

  (2)认真审题,弄清基数,增长了,增长到等词语的关系.

  (3)用直接开平方法做简单,不要将括号打开.

  练习1.教材P.42中5.

  学生分析题意,板书,笔答,评价.

  练习2.若设每年平均增长的百分数为x,分别列出下面几个问题的方程.

  (1)某工厂用二年时间把总产值增加到原来的b倍,求每年平均增长的百分率.

  (1+x)2=b(把原来的总产值看作是1.)

  (2)某工厂用两年时间把总产值由a万元增加到b万元,求每年平均增长的百分数.

  (a(1+x)2=b)

  (3)某工厂用两年时间把总产值增加了原来的b倍,求每年增长的百分数.

  ((1+x)2=b+1把原来的总产值看作是1.)

  以上学生回答,教师点拨.引导学生总结下面的规律:

  设某产量原来的产值是a,平均每次增长的百分率为x,则增长一次后的`产值为a(1+x),增长两次后的产值为a(1+x)2 ,…………增长n次后的产值为S=a(1+x)n.

  规律的得出,使学生对此类问题能居高临下,同时培养学生的探索精神和创造能力.

  例2 某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分数相同,求每次降价百分之几?

  分析:设每次降价为x.

  第一次降价后,每件为600-600x=600(1-x)(元).

  第二次降价后,每件为600(1-x)-600(1-x)x

  =600(1-x)2(元).

  解:设每次降价为x,据题意得

  600(1-x)2=384.

  答:平均每次降价为20%.

  教师引导学生分析完毕,学生板书,笔答,评价,对比,总结.

  引导学生对比“增长”、“下降”的区别.如果设平均每次增长或下降为x,则产值a经过两次增长或下降到b,可列式为a(1+x)2=b(或a(1-x)2=b).

  (四)总结、扩展

  1.善于将实际问题转化为数学问题,严格审题,弄清各数据相互关系,正确布列方程.培养学生用数学的意识以及渗透转化和方程的思想方法.

  2.在解方程时,注意巧算;注意方程两根的取舍问题.

  3.我们只学习一元一次方程,一元二次方程的解法,所以只求到两年的增长率.3年、4年……,n年,应该说按照规律我们可以列出方程,随着知识的增加,我们也将会解这些方程.

  四、布置作业

  教材P.42中A8

  五、板书设计

  12.6 一元二次方程应用(三)

  1.数量关系:例1……例2……

  (1)原产量+增产量=实际产量分析:……分析……

  (2)单位时间增产量=原产量×增长率解……解……

  (3)实际产量=原产量(1+增长率)

  2.最后产值、基数、平均增长率、时间

  的基本关系:

  M=m(1+x)n n为时间

  M为最后产量,m为基数,x为平均增长率

《比的应用》教学设计15

  教学目标:

  1.利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。

  2.能根据正比例的意义,判断两个相关联的量是不是成正比例。

  3.结合丰富的事例,认识正比例。

  教学重点:

  1、结合丰富的事例,认识正比例。

  2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

  教学难点:

  能根据正比例的意义,判断两个相关联的量是不是成正比例。教学课时:两课时

  第一课时

  教学过程:

  一、课前预习

  1、填好书中所有的表格

  2、理解粉色框中话的意义,体会正比例的两个量有怎样的关系?

  3、把不理解的内容用笔作重点记号,待课上质疑解答

  二、展示与交流

  活动一:在情境中感受两种相关联的量之间的变化规律。

  (一)情境一:

  1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

  2、填完表以后思考:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?

  说说从数据中发现了什么?

  3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。

  说说你发现的'规律。

  (二)情境二:

  1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

  2、请把下表填写完整。

  3、从表中你发现了什么规律?

  说说你发现的规律:路程与时间的比值(速度)相同。

  (三)情境三:

  1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

  2、把表填写完整。

  3、从表中发现了什么规律?

  应付的钱数与质量的比值(也就是单价)相同。

  4、说说以上两个例子有什么共同的特点。

  小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

  5、正比例关系:

  (1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

  (2)购买苹果应付的钱数与质量有什么关系?

  6、观察思考成正比例的量有什么特征?

  一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。

  (四)想一想:

  1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?

  师小结:

  (1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

  请你也试着说一说。

  (2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

  请生用自己的语言说一说。

  2、小明和爸爸的年龄变化情况如下:

  小明的年龄/岁67891011

  爸爸的年龄/岁3233

  (1)把表填写完整。

  (2)父子的年龄成正比例吗?为什么?

  (3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。

  与同桌交流,再集体汇报

  在老师的小结中感受并总结正比例关系的特征

  一、反馈与检测

  1、在一间布店的柜台上,有一张写着某种花布的米数和总价如下表:

  数量(米) 7

  总价(元)

  9.519

  28.5

  47.5

  66.5

  1.表中有()和()两种量。

  2.任意写出三个相对应的总价和数量的比,并算出它们的比值。 3、在这道题里,花布的()一定,()和()成正比例。 自己读题,并试着填一填.指名汇报.二、回答问题

  1、根据下表中平行四连形的面积与高相对应的数据,判断当底是6厘米时,它们是不是成正比例,并说说理由。

  平行四边形的面积

  218 430

  平行四边形的高

  默读题目,有答案的举手.2、把表填完整,从中你发现了什么?应付的钱数与所买的邮票的枚数成正比例吗?买面值8角的邮票。打开书21页,在书上完成.3、判断下面各题中的两个量是否成正比例,并说明理由。

  (1)每袋大米的质量一定,大米的总质量和袋数。

  (2)一个人的身高和年龄。

  (3)宽不变,长方形的周长与长

  (4)火车行驶的时间和路程。

  (5)火车的速度一定,行驶的时间和路程。

  4、能力培养

  把一定数量的钱放到银行存活期,存款的年限和所得的利息是不是成正比例?

  5、找一找生活成正比例的

  板书设计: 正比例 X=ky(k一定)

  2.正比例和反比例

  第二课时

  教学目标:

  使学生理解正比例的意义,会正确判断成正比例的量。教学重点难点:

  重点:理解正比例的意义。

  难点:正确判断两个量是否成正比例的关系。教学过程:

  一、复习导入 1.复习引入。

  用投影仪逐一出示下面的题目,让学生回答。

  ①已知路程和时间,怎样求速度?

  板书: =速度。

  ②已知总价和数量,怎样求单价?

  板书: =单价。

  ③已知工作总量和工作时间,怎样求工作效率? 板书: =工作效率。

  2.引入课题:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。

  二、新课讲授

  1.教学例1

  教师用投影仪出示例1的图和表格。学生观察上表并讨论问题。

  (1)铅笔的总价和数量有关系吗?

  (2)铅笔的总价是怎样随着数量的变化而变化的?

  (3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。

  根据观察,学生可能会说出:

  ①铅笔的总价随着数量变化,它们是两种相关联的量。②数量增加,总价也增加;数量降低,总价也减少。③铅笔的总价和数量的比值总是一定的,即单价一定。教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。

  2.教师出示:一列火车行驶的时间和路程如下表。

  引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?

  组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是 =速度(一定)

  小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。

  三、归纳概括正比例关系。

  ①组织学生分小组讨论,上面两个例子有什么共同规律?

  ②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。

  学生说一说是怎么理解正比例关系的。要求学生把握三个要素:

  第一:两种相关联的量。

  第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。第三:两个量的比值一定。4.用字母表示正比例的关系。教师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用这样的式子表示:

  (一定)5.教师:想一想,生活中还有哪些成正比例的量?

  学生举例说明并说出理由如:长方形的宽一定,面积和长成正比例;每袋牛奶质量一定,牛奶袋数和总质量成正比例;衣服的单价一定,购买衣服的数量和应付钱数成正比例。地砖的面积一定,教室地板面积和地砖块数成正比例;

  四、课堂小结:

  通过这节课的学习,你有什么收获?

  五、课后作业

  完成练习册中本课时的练习。完成教材第46页的“做一做”(1)~(3)。

  六、板书设计

  第1课时

  正比例 =速度(一定)=单价(一定)=工作效率(一定)

  (一定)

  成正比例的量的三要素:

  第一:两种相关联的量。

  第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。第三:两个量的比值一定。

【《比的应用》教学设计】相关文章:

分数与除法的应用教学反思01-01

教学设计01-14

分数除法应用题教学反思10-28

足球教学设计11-06

国殇教学设计11-08

美术教学设计11-09

叶公好龙教学设计11-15

《秋天》教学设计11-17

《蜜蜂》教学设计11-24