方程教学设计
作为一名老师,通常需要准备好一份教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。怎样写教学设计才更能起到其作用呢?以下是小编帮大家整理的方程教学设计 ,仅供参考,大家一起来看看吧。
方程教学设计 1
教学目标
掌握b2—4ac>0,ax2+bx+c=0(a≠0)有两个不等的实根,反之也成立;b2—4ac=0,ax2+bx+c=0(a≠0)有两个相等的实数根,反之也成立;b2—4ac<0,ax2+bx+c=0(a≠0)没实根,反之也成立;及其它们关系的运用。
通过复习用配方法解一元二次方程的b2—4ac>0、b2—4ac=0、b2—4ac<0各一题,分析它们根的情况,从具体到一般,给出三个结论并应用它们解决一些具体题目。
重难点关键
1。重点:b2—4ac>0 一元二次方程有两个不相等的实根;b2—4ac=0 一元二次方程有两个相等的实数;b2—4ac<0 一元二次方程没有实根。
2。难点与关键
从具体题目来推出一元二次方程ax2+bx+c=0(a≠0)的b2—4ac的情况与根的情况的关系。
教具、学具准备
小黑板
教学过程
一、复习引入
(学生活动)用公式法解下列方程。
(1)2x2—3x=0 (2)3x2—2 x+1=0 (3)4x2+x+1=0
老师点评,(三位同学到黑板上作)老师只要点评(1)b2—4ac=9>0,有两个不相等的实根;(2)b2—4ac=12—12=0,有两个相等的实根;(3)b2—4ac=│—4×4×1│=<0,方程没有实根。
二、探索新知
方程b2—4ac的`值b2—4ac的符号x1、x2的关系
(填相等、不等或不存在)
2x2—3x=0
3x2—2 x+1=0
4x2+x+1=0
请观察上表,结合b2—4ac的符号,归纳出一元二次方程的根的情况。证明你的猜想。
从前面的具体问题,我们已经知道b2—4ac>0(<0,=0)与根的情况,现在我们从求根公式的角度来分析:
求根公式:x= ,当b2—4ac>0时,根据平方根的意义, 等于一个具体数,所以一元一次方程的x1= ≠x1= ,即有两个不相等的实根。当b2—4ac=0时,根据平方根的意义 =0,所以x1=x2= ,即有两个相等的实根;当b2—4ac<0时,根据平方根的意义,负数没有平方根,所以没有实数解。
因此,(结论)(1)当b2—4ac>0时,一元二次方程ax2+bx+c=0(a≠0)有两个不相等实数根即x1= ,x2= 。
(2)当b—4ac=0时,一元二次方程ax2+bx+c=0(a≠0)有两个相等实数根即x1=x2= 。
(3)当b2—4ac<0时,一元二次方程ax2+bx+c=0(a≠0)没有实数根。
例1。不解方程,判定方程根的情况
(1)16x2+8x=—3 (2)9x2+6x+1=0
(3)2x2—9x+8=0 (4)x2—7x—18=0
分析:不解方程,判定根的情况,只需用b2—4ac的值大于0、小于0、等于0的情况进行分析即可。
解:(1)化为16x2+8x+3=0
这里a=16,b=8,c=3,b2—4ac=64—4×16×3=—128<0
所以,方程没有实数根。
三、巩固练习
不解方程判定下列方程根的情况:
(1)x2+10x+26=0 (2)x2—x— =0 (3)3x2+6x—5=0 (4)4x2—x+ =0
(5)x2— x— =0 (6)4x2—6x=0 (7)x(2x—4)=5—8x
四、应用拓展
例2。若关于x的一元二次方程(a—2)x2—2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示)。
分析:要求ax+3>0的解集,就是求ax>—3的解集,那么就转化为要判定a的值是正、负或0。因为一元二次方程(a—2)x2—2ax+a+1=0没有实数根,即(—2a)2—4(a—2)(a+1)<0就可求出a的取值范围。
解:∵关于x的一元二次方程(a—2)x2—2ax+a+1=0没有实数根。
∴(—2a)2—4(a—2)(a+1)=4a2—4a2+4a+8<0
a<—2
∵ax+3>0即ax&
gt;—3
∴x<—
∴所求不等式的解集为x<—
五、归纳小结
本节课应掌握:
b2—4ac>0 一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实根;b2—4ac=0 一元二次方程ax2+bx+c=0(a≠0)有两个相等的实根;b2—4ac<0 一元二次方程ax2+bx+c=0(a≠0)没有实数根及其它的运用。
六、布置作业
1。教材P46 复习巩固6 综合运用9 拓广探索1、2。
2。选用课时作业设计。
第7课时作业设计
一、选择题
1。以下是方程3x2—2x=—1的解的情况,其中正确的有( )。
A。∵b2—4ac=—8,∴方程有解
B。∵b2—4ac=—8,∴方程无解
C。∵b2—4ac=8,∴方程有解
D。∵b2—4ac=8,∴方程无解
2。一元二次方程x2—ax+1=0的两实数根相等,则a的值为( )。
A。a=0 B。a=2或a=—2
C。a=2 D。a=2或a=0
3。已知k≠1,一元二次方程(k—1)x2+kx+1=0有根,则k的取值范围是( )。
A。k≠2 B。k>2 C。k<2且k≠1 D。k为一切实数
二、填空题
1。已知方程x2+px+q=0有两个相等的实数,则p与q的关系是________。
2。不解方程,判定2x2—3=4x的根的情况是______(填"二个不等实根"或"二个相等实根或没有实根")。
3。已知b≠0,不解方程,试判定关于x的一元二次方程x2—(2a+b)x+(a+ab—2b2)=0的根的情况是________。
三、综合提高题
1。不解方程,试判定下列方程根的情况。
(1)2+5x=3x2 (2)x2—(1+2 )x+ +4=0
2。当c<0时,判别方程x2+bx+c=0的根的情况。
3。不解方程,判别关于x的方程x2—2kx+(2k—1)=0的根的情况。
4。某集团公司为适应市场竞争,赶超世界先进水平,每年将销售总额的8%作为新产品开发研究资金,该集团20xx年投入新产品开发研究资金为4000万元,20xx年销售总额为7。2亿元,求该集团20xx年到20xx年的年销售总额的平均增长率。
方程教学设计 2
一、教学目标:
1。经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2。理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。
3。能够利用二次函数的图象求一元二次方程的近似根。
二、教学重点、难点:
教学重点:
1。体会方程与函数之间的联系。
2。能够利用二次函数的图象求一元二次方程的近似根。
教学难点:
1。探索方程与函数之间关系的过程。
2。理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
三、教学方法:启发引导 合作交流
四:教具、学具:课件
五、教学媒体:计算机、实物投影。
六、教学过程:
[活动1] 检查预习 引出课题
预习作业:
1。解方程:(1)x2+x—2=0; (2) x2—6x+9=0; (3) x2—x+1=0; (4) x2—2x—2=0。
2。 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x—4=0的解。
师生行为:教师展示预习作业的内容, 指名回答,师生共同回顾旧知,教师做出适当总结和评价。
教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。
设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。
[活动2] 创设情境 探究新知
问题
1。课本P16 问题。
2。结合图形指出,为什么有两个时间球的高度是15m或0m?为什么只在一个时间球的高度是20m?
(结合预习题1,完成课本P16 观察中的题目。)
师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。
二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?
二次函数y=ax2+bx+c的图象和x轴交点
一元二次方程ax2+bx+c=0的根
一元二次方程ax2+bx+c=0根的判别式=b2—4ac
两个交点
两个相异的实数根
b2—4ac 0
一个交点
两个相等的实数根
b2—4ac = 0
没有交点
没有实数根
b2—4ac 0
教师重点关注:
1。学生能否把实际问题准确地转化为数学问题;
2。学生在思考问题时能否注重数形结合思想的应用;
3。学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。
设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。
[活动3] 例题学习 巩固提高
问题: 例 利用函数图象求方程x2—2x—2=0的实数根(精确到0。1)。
师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。
教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。
设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。
[活动4] 练习反馈 巩固新知
问题:(1) P97。习题 1、2(1)。
师生行为:教师提出问题,学生独立思考后写出答案,师生共同评价;问题(2)学生独立思考后同桌交流,实物投影出学生解题过程,教师强调正确解题思路。
教师关注:学生能否准确应用本节课的`知识解决问题;学生解题时候暴露的共性问题作针对性的点评,积累解题经验。
设计意图:这两个题目就是对本节课知识的巩固应用,让新知识内化升华,培养数学思维的严谨性。
[活动5] 自主小结,深化提高:
1。通过这节课的学习,你获得了哪些数学知识和方法?
2。这节课你参与了哪些数学活动?谈谈你获得知识的方法和经验。
师生活动:学生思考后回答,教师对学生的错误予以纠正,不足的予以补充,精彩的适当表扬。
设计意图:
1。题促使学生反思在知识和技能方面的收获;
2。题让学生反思自己的学习活动、认知过程,总结解决问题的策略,积累学习知识的方法,力求不同的学生有不同的发展。
[活动6] 分层作业,发展个性:
1。(必做题)阅读教材并完成P97 习题21。2: 3、4。
2。(备选题)P97 习题21。2:5、6
设计意图:分层作业,使不同层次的学生都能有所收获。
七、教学反思:
1。注重知识的发生过程与思想方法的应用
《用函数的观点看一元二次方程》内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生跳一跳就可以摘到桃子。
探究抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系及其应用的过程中,引导学生观察图形, 从图象与x轴交点的个数与方程的根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方法。这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。
2。关注学生学习的过程
在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的平台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的形成和能力的培养相伴而行,创造海阔凭鱼跃,天高任鸟飞的课堂境界。
3。强化行为反思
反思是数学的重要活动,是数学活动的核心和动力,本节课在教学过程中始终融入反思的环节,用问题的设计,课堂小结,课后的数学日记等方式引发学生反思,使学生在掌握知识的同时,领悟解决问题的策略,积累学习方法。说到数学日记,数学日记就是学生以日记的形式,记述学生在数学学习和应用过程中的感受与体会。通过日记的方式,学生可以对他所学的数学内容进行总结,写出自己的收获与困惑。数学日记该如何写,写什么呢?开始摸索写数学日记的时候,我根据课程标准的内容给学生提出写数学日记的简单模式:日记参考格式:课题;所涉及的重要数学概念或规律;理解得最好的地方;不明白的或还需要进一步理解的地方;所涉及的数学思想方法;所学内容能否应用在日常生活中,举例说明。通过这两年的摸索,我把数学日记大致分为:课堂日记、复习日记、错题日记。
4。优化作业设计
作业的设计分必做题和选做题,必做题巩固本课基础知识,基本要求;选做题属于拓广探索题目,培养学生的创新能力和实践能力。
方程教学设计 3
【教学内容】
教材第62、63页的内容,练习十四的第1~3题。
【教学目标】
1.通过教学,使学生理解与掌握方程的意义和等式的基本性质。
2.培养学生观察、归纳和概括的能力。
3.培养学生仔细观察的良好习惯。
【重点难点】
理解方程的意义。
【教学准备】
多媒体课件,自制天平教具。
【情景导入】
在下面算式的○里填上“>”、“<”或“=”。
3×6○19 7○1.8+5.2
2.5÷5○2×0.25 24+11○11+24
3.9-3○4÷5 15×8+2○120+2
小结:像7=1.8+5.2,2.5÷5=2×0.25,24+11=11+24,15×8+2=120+2这样的式子叫做等式。这节课我们就来研究有关等式的`问题。
【新课讲授】
1.激趣导入。
师:同学们在游乐场玩过跷跷板的游戏吗?(多媒体出示小朋友玩跷跷板的画面)如果两端的小朋友重量一样,会出现什么情况呢?这就是平衡。
2.方程的意义。
(1)认识天平。
出示简易天平、砝码。
提问:同学们知道这是什么?它是用来干什么的?怎样用天平来称物品的重量呢?
师:这是一台天平,用来称量物体的重量。在天平的左盘内放置所称的物品,右盘内放置砝码,当天平的指针在标尺中间时,表示天平平衡,也就是天平两端的重量相等,砝码上所标的重量就是所称物体的重量。
(2)实验演示,引出方程。
师:下面我来演示一下如何用天平称物品的重量。
演示实验一:称出一只空杯子重100克。
提问:天平平衡了吗?这说明一只空杯子重多少克?
板书:一只空杯子=100克
演示实验二:往空杯子里倒入约150毫升水(可在水中滴几滴红墨水显示)。
提问:现在天平怎样?如果水重x克,杯子和水共重多少克?你能用一个式子来表示吗?
板书:100+x>100
演示实验三:增加100克砝码。
提问:增加100克砝码,发现了什么?(杯子和水比200克重)
如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?
板书:100+x>200
演示实验四:再增加100克砝码,天平往砝码这边倾斜。
提问:现在哪边重些?怎样用式子表示?
板书:100+x<300
演示实验五:把100克砝码换成50克,天平出现平衡。
提问:现在天平怎样?你能用一个式子来表示天平是平衡的吗?
板书:100+x=250
(3)理解“等式”、“不等式”和“方程”的意义。
出示多幅天平图。
提问:这些图你能用式子表示吗?
板书:40+x=100,2x+50<180,80+70=100+50,3x=180,65+30>80,100+2x=50×3。
教师指出:像2x+50<180,65+30>80这样用大于、小于号连成的式子,它们左右两边不相等,就叫做不等式。像40+x=100,80+70=100+50这样用等号连接成的式子,它们左右两边相等,就叫做等式。
师:观察以上有几个是等式,你能不能分类,也说一说你分类的标准?(同桌讨论)
可以分成两类:
第一类:80+70=100+50。
第二类:40+x=1003x=180100+2x=50×3
讲解:像第二类这样,含有未知数的等式叫做方程。
提问:说一说什么叫方程?必须具备哪几个条件?
(一必须是等式,二必须含有未知数)
师:你能举例说明什么是方程吗?(根据学生发言,教师板书。)
老师再板书几个一般的等式,如:
20+80=100 3×78=234 13-8=5
引导学生观察、对比、思考:方程有什么特点?方程与等式之间有什么联系呢?
小组讨论,先在组内说一说,再全班说。
根据学生发言,教师加以引导,使学生明确:等式包括方程,等式的范围比方程的范围大;方程都是等式,但等式不一定是方程。你能用图示表示出来吗?
板书:
【课堂作业】
1.完成课本第63页的“做一做”。
2.我是小法官,对错我来判。(对的在括号内打“√”,错的打“X”)
(1)含有未知数的式子都是方程。()
(2)4m-9=0不是方程。()
(3)方程是等式。()
3.用方程表示下面的数量关系。
【课堂小结】
提问:这节课你学习了什么?有什么收获?
小结:这节课,我们学习了等式、不等式和方程。方程和等式既有区别又有联系,方程必须是含有未知数的等式,而等式只要等号两边数值相等即可,所以等式包括方程,但等式不一定是方程。
【课后作业】
完成教材练习十四的第1~3题。
方程教学设计 4
教学内容:
小学数学实验教材(北师大版)四年级下册P92-94内容。
教学目标:
1、结合具体情境了解方程的意义。
2、会用方程表示简单情境中的等量关系。
3、在列方程的过程中发展抽象概括能力。
教学重点:
理解方程的意义、方程与等式的区别和联系。
教学难点:
用方程表示情境中的等量关系。
教学过程:
一、情境引入
师:同学们,你们玩过跷跷板吗?
生:玩过。
师:老师也很喜欢跷跷板。
(课件播放录像:一个画面同时出现:两个体重差不多的同学、老师和班上大个子同学玩跷跷板,然后出现:老师和班上小个子同学准备玩,学生先上去之后,老师上去把学生跷上去,然后就玩不了。)
师:我和XX同学为什么不玩了呢?
生:因为老师的重量比XX同学的重量重,两边不平衡。
师:如果双方坐在离跷跷板中心点相同距离的位置能很轻松地玩跷跷板,应该要有什么要求。
生:两边的重量要相等。跷跷板就平衡。
师:受跷跷板平衡的启发,人类很早就发明了称物体质量的天平。
二、新知探究
1、借助天平,认识等式(不含未知数)
师:老师有一台天平,可以称物体的重量,当两边物体的重量一样时,天平就会平衡。那我们来试一试。
师:(借助天平边演示边问)在天平左边放两袋100克的食物。右边放一个200的砝码,天平怎么样?
生:平衡了。
师:你会用一个数学式子来表示天平的现在的状况吗?
生:100+100=200 师:左边表示什么? 右边表示什么?
生:左边表示食物的质量,右边表示砝码的.质量。
师:(指着式子)正因为食物的质量等于砝码的质量,所以天平平衡了。像这样的式子,我们把它叫作等式(板书:等式),你还能说出一些像这样的等式吗?
(请五个学生边说,师边板书在大椭圆内。)
2、借助天平,学会列等量关系式 (课件演示)
1 师:为了让大家看得更清楚,我们通过大屏幕来看看天平,如果在天平的左边放上一个苹果,右边放上200克的砝码,现在天平怎样了?
生:不平衡。
师:要使天平平衡,有什么办法?
生:在左边再放东西。(课件继续演示)
师:现在天平怎样了?
生:平衡了。
师:你能用一个数量关系式来表示现在天平平衡的状态吗?
生:苹果的重量+20=200(课件出示)(课件出示情境图:天平称梨子)
师:你能根据这幅图来说出一个数量关系式表示天平平衡的状态吗?
生:150=梨子的重量+50(课件出示)(课件出示情境图:台称称月饼)
师:下面老师加大难度,敢接受挑战吗?
生:敢
师:这是一个台称,你能根据这幅图说出一个数量关系式吗?
生:能!每个月饼的重量×4=380(课件出示)
3、把关系式改写成含有未知数的等式、初步认识方程
师:每个月饼的重量不知道可以用什么表示?
生:用字母X
师:如果用X表示每个月饼的重二,这个关系式可以怎么改?
生:X×4=380(课件出示)
师:不用字母X,还可以用别的字母吗?
生:……
(课件出示:苹果、梨子关系式)
师:刚才的这两个关系式你会改写吗?
生:……
(课件出示:Y+20=200、150=Z+50)师:你会自己说出像这样的等式吗?
(请三个学生边说,师边板书在小椭圆内。)师指着黑板上的等式问:像这些式子都是等式。(画出大椭圆)中间的这三个等式与旁边的这五个等式有什么不同吗?
生:这三个等式含有未知数。
师:像这样的等式我们也给它们起个名字,那就是方程。(板书:方程,并画出小椭圆)
4、辨认方程
师:刚才你们紧紧抓住天平两边平衡的原理学会了列等量关系式,通过这些关系式还认识了方程,真了不起!这个过程就是我们发现、理解、体验的过程。现在X老师如果给你们一些式子,你们会判断哪些是方程、哪些不是方程吗?
生:能!
师:那我们就来一场比赛,我把全班同学一分为二,像这样分开,左边同学是A组挑不是方程的,那右边的B组呢?
生:挑是方程的。
师:每队各选一个代表吧!A组选谁?B组呢?(生推荐代表后,代表上台)
师:同学们,这可是一场比赛,他们是你们的代表,如果你们发现问题了,可以马上给他们出主意、想办法,行吗?
生:行。
师:有问题马上说。
生:好的。
师问分别台上的两名同学:你是挑什么的。
生1:我挑是方程的。
师:如果是方程,你就把它贴在这里。师问另一生:你呢?
生2:我挑不是方程的。
师:如果我出示的式子不是方程,你就把它贴在这里,可以吗?
生:可以。
师出示第一张纸条,生一时没反应过来。
师:谁要赶紧抢。
师接着逐一出示纸条,让两名学生代表选。
预设:
一:若两名生同时抢一张纸条,则让他们说说怎么想的,也可以让台下的两组学生辩论,当台上学生出现错误思维时,一定要让台下学生辩论,直到他们达成共识。
二:若在选的过程中暂时没有出现不统一的意见,师问学生代表:你们两个对刚才对方做出的选择有意见吗?若这两名学生没意见,师再问台下的同学:你们对他们的选择有意见吗?
讨论完达成共识后,师请两名同学站在讲台前。
师:了不起,其实刚才这组式子,很多种情况是我们刚开始研究时没有遇到过的,X老师把它们出示出来,希望大家通过这样的讨论更加清晰对方程的认识。在讨论中你们能坚持自己的观点,还能说出理由来,老师由衷地佩服你们,那我们的比赛结果呢?
生:…
师:我建议我们的比赛两个队都是冠军,好吗?给自己鼓鼓掌。
5、概括方程的意义、方程与等式的区别和联系。
师指黑板上的两组算式:请同学们仔细观察,这些是方程,这些呢?
生:不是方程。
师:那现在你们能不能概括地说一说方程具有哪些特征呢?
生:方程含有未知数、方程是等式。(师随机板书:未知数、等式)
师:像这样含有未知数的等式就叫做方程(把方程的意义板书完整)
师:我们这节课一起学习的就是方程。(板书课题:方程)
师指黑板上的椭圆:请同学们仔细观察这幅图,你们能根据这幅图想一想,方程与等式有什么联系和区别吗?
生:是方程一定是等式、是等式不一定是方程、等式包含了方程。
三、巩固练习1.看图列方程
3 师:看来同学们理解了方程的意义,掌握了方程的特征。请同学们打开书本P89,看图列出方程。
(生独立完成)
师:做完的同学请你们与前后桌的同学说一说你是怎么想的。生汇报,师课件演示。
2、判断被墨水弄脏的两个式子,是不是方程
师:老师课前也写了两个式子,可是不小心被墨水弄脏了,你们能猜猜它们是不是方程吗?
3、在生活中进一步体会方程
师:其实方程就隐含在我们的生活中,在我们的生活中有很多问题都能用方程的方法来解决。
(1)书P88倒开水
(2)书P89公共汽车
4、用方程描述生活
师:刚才我们用方程表达了日常生活中的问题,同样我们也可以用日常生活问题来描述方程。
(课件出示)结合生活中的事例来解释方程。(1)Y+19=54(2)X-14=36(3)Z-13+15=37
生:……
师:听了同学们的描述,老师认为大家确实理解了方程的意义,会把生活和数学联系起来了,真了不起!
四、课堂总结
师:通过这节课的学习,你学会了什么?还有什么疑问吗?
生:……
方程教学设计 5
本节课是解方程的第1课时,要求学生通过演示操作理解天平平衡的原理,初步理解方程的解和解方程的含义,会检验一个具体的值是不是方程的解,掌握检验的格式。
1.充分发挥学生的自主能动性,培养学生的自学能力。
《数学课程标准》中指出“教师活动是师生积极参与,交往互动,共同发展的过程”“学生是学习的主体,教师是学习的组织者、引导者、合作者”。本设计首先采用“先试后教,先做后说”的方法,充分发挥学生的主体性和主动性,引导学生从复习天平平衡的原理入手,产生质疑,然后认识“方程的解”和“解方程”这两个概念,明确两者之间的区别与联系,师生共同探讨解方程的过程,培养学生的自主探究能力,探索交流解方程的方法。
2.规范书写格式,养成良好的学习习惯。
数学学习要求学生养成规范书写,认真检验的良好习惯。因此在解方程的过程中,对书写格式进行要求,强化必要的书写规范。通过安排小组对解方程的检验进行交流,明确检验的思路,培养学生良好的学习习惯。
课前准备
教师准备 PPT课件 天平 盒子 乒乓球
学生准备 练习卡片 天平 盒子 乒乓球
教学过程
⊙创设情境,生成问题
师:现在我们一起玩一个猜球游戏。
(出示一个不透明的'盒子,让学生猜里面有几个球;学生可以任意猜)
师:你们能准确说出盒子里有几个球吗?
生:不能!(师引导学生可以用字母x来表示球的个数)
(课件出示教材67页例1情境图)
师:从图上你知道了什么信息?
师:你能用一个方程来表示吗?(板书:x+3=9)
设计意图:通过猜一猜游戏导入新课,为下面的学习创设良好的问题情境,提高学生的学习兴趣。
⊙探索交流,解决问题
1.教学例1。
(1)独立思考:盒子里有几个球?x的值是多少?(由于数据较小,学生能够独立思考出结果)
(2)小组内交流:说说你是怎样想的。
(这里给予学生一定思考和交流的时间,重点让学生说说自己的思考过程)
(3)全班交流:x的值是多少?说说你是怎样想的。
学生可能有以下几种想法:
预设 生1:利用加减法的关系计算:9-3=6。
生2:想6+3=9,所以x=6。
生3:把9分成6和3,想x+3=6+3,所以x=6。
生4:在方程两边同时减去3,就得到x=6。
师:同学们的想法真不少!前3个同学都是利用加减法的关系或数的分成想出了答案。第4个同学的想法有什么不同?他的想法对吗?我们可以来验证一下。
(4)操作验证:师拿出课件演示中的天平实物。(天平左边有一个不透明盒子和3个球,右边有一个相同的透明的盒子,里面有9个球,天平平衡)
师:现在谁来试一试?左右两边同时拿走3个球,天平会怎么样?(学生拭目以待,跃跃欲试)
学生操作演示,天平平衡。
2.指导解方程的书写格式。
师:通过操作我们发现他的想法是对的。以后我们就用等式的性质来求方程中未知数的值。这个演算过程应该如何书写呢?
(让学生与同桌交流,发表自己的看法)
师:从方程的第二行起写一个“解:”,利用等式的性质两边同时减去一个3,为了美观,要注意每步中的等号要对齐。(师边强调边示范)
师:左右两边同时减去的为什么是3,而不是其他数呢?
学生纷纷说出自己的想法。
方程教学设计 6
教学目标:
1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。
2、通过观察比较,使学生认识含有未知数的等式是方程,感受等式与方程的练习与区别,体会方程是特殊的等式。
教学重点:
理解等式的性质,理解方程的意义。
教学难点:
利用等式性质和方程的意义列出方程。
教学过程:
(一)旧知导入,唤起记忆
1.口答:50+()=80 60-()=30
列式计算。
(1)—支圆珠笔1.5元,10支圆珠笔多少元?
(2)2.5的4倍与60的和是多少?
(二)教学新知
1.情景呈现,抽象模型。
(1)这是一架天平,可以用来称物品的重量。
(2)提问:在天平两边放物体,什么情况下才能使天平保持平衡?
学生探究后得出统一认识:当天平的指针指在标尺中间时,表示天平平衡,即天平两端物体的重量相等。
2.通过演示引出等式。
(1)演示:在左边放两个20克和30克的重物,右边砝码也是50克。
让学生观察,天平是平衡的吗?说明了什么?怎样用式子表示?学生观察后,发现天平平衡,可以用式子表示。
教师板书:20+30=50,指出:说明天平两边的重量相等。
(2)教师揭示含义:表示左右两边相等的式子叫等式。(板书)
(3)指导学生观察教材第1页例题1,写出答案:50+50=100
设计意图:在这一过程当中,用不同的砝码使天平达到平衡,启发学生思考如何用算式来表达这一现象,最终目的`是要引出等式的含义,使学生在理解的基础上接受等式的概念。
3.换用砝码继续演示。
(1)教师操作天平继续演示。
调整天平,在左盘放一个50克的重物和一个未知重量的方块,右盘里放一个100克重的砝码。(如教材第1页第二幅图)让学生观察天平是否平衡(指针正好指在刻度线中央,天平是平衡的),那么也就说明了这个天平左右两边的重量相等。怎样用等式表示出来呢?
学生思考,同桌交流,教师引导,未知量暂用?表示。
教师板书:+50=100。
讲解:等式“ +50=100”中的是未知数,通常我们用x来表示,那么上面的等式可写成x+50=100(教师板书)。
(3)比较:等式“x+50=100”与等式“50+50=100”有什么不同?
学生交流,汇报:含有未知数。
教师指出“x+50=100”是含有未知数的等式。
指导学生想一想x等于多少,才能使等式“x+50=100”左右两边相等?(未知方块50
克时才能使天平两边的重量相等,即x=50)
4.观察教材第2页例题2。
(1)出示教学例题图让学生用式子来表示天平两边的质量关系。
学生独立完成,教师巡视指导。
(2)交流展示:(
学生回答,教师补充)
x+50>100
x+50=150
x+50<200
2x=200
(3)引导学生观察上面的所写的算式,选出其中的等式。
x+50=150
2x=200
(4)教师将4个等式标上序号。
5.揭示方程的含义。
(1)学生综合观察以上四个等式,想一想,它们之间有什么联系,有哪些区别?
①20+30=50,
②50+50=100
一般的等式
③x+50=100
,
④2x=200
含有未知数的等式
引导学生讨论,总结:
①、②、③、④算式中都有一个等号,是等式。
③、④算式不仅是等式,而且都含有未知数。
(2)教师揭示板书:像x+50=100
,2x=200等,含有未知数的等式叫做方程。
(3)追问:要判断是否是方程,必须要满足什么条件?
学生回答,教师补充:一要是等式,二要含有未知数,二者缺一不可。
6.理解等式与方程的关系。
(1)追问:通过学习我们能够判断出哪些是等式,哪些是方程,那等式和方程之间有关系吗?有什么关系?
学生小组讨论交流,汇报。
(2)教师小结指出:在数学上,我们还通常用这样的集合图来表示等式和方程的关系。
(3)板书:方程与等式的关系图。
(三)巩固新知,练习应用
1、预习答疑:通过练习让学生了解等式与不等式的区别与含义。
答疑:含有“>或<”的式子是不等式,含有“=”的式子是等式。
2、教材习题
教材第2页练一练第1题。
讲评:等式有(6+x=1436-7=295y=4050÷2=25)。方程有(6+x=145y=40)。
3、练一练第2题(指名学生来回答,教师补充说明,答案不唯一)。
讲评:此题答案不唯一
如3+x=10y×6=48240÷a=8,重点让学生初步体会未知数可以用字母来表示。
五、课堂作业:
完成第三部分习题设计“课堂作业”第1、3题。
教学反思:
从等式到方程,学生的认知有了跳跃,因此本课的教学中,应借助天平演示帮助学生感知等式与不等式,然后再借助现实的相等情境写出方程。这样由表及里,由浅入深,学生在把实际问题的等量关系用符号化抽象成方程时,既感受了方程与日常生活的联系,也体会到了方程的本质特征,从而巩固了方程的概念。在新课结束后,可能有部分学生在练习时发生错误,订正时应让学生抓住方程的特征进行辨别判断。
七、板书设计:
等式:表示等号两边两个式子的相等关系。
如20+3=50 50+50=100
方程:含有未知数的等式。如x+50=150 2x=200等
方程教学设计 7
教学目标:
进一步认识方程,理解一元一次方程的概念,会根据题意列简单的一元一次方程。
认识方程的解的概念。
掌握验根的方法。
体验用尝试法解一元一次方程的思想方法。
重点:
一元一次方程的概念
难点:
尝试检验法
教学过程:
1、温故
方程是含有______的______.
归纳:判断方程的两要素:
①有未知数②是等式
(通过填空让学生简单回顾方程概念,并总结方程两要素)
2、知新
根据题意列方程:
(1)一件衣服按8折销售的售价为72元,这件衣服的原价是多少元?
设这件衣服的原价为x元,8折后售价为______
可列出方程、
(2)有一棵树,刚移栽时,树高为2m,假设以后平均每年长0.3m,几年后树高为5m?
设x年后树高为5m,
可列出方程_______
(3)物体在水下,水深每增加10.33米承受的压力就会增加1个大气压、当“蛟龙”号下潜至3500米时,它承受的压力约为340个大气压、问当它承受压力增加到500个大气压时,它又继续下潜了多少米?
设它又继续下潜了x米,
x米增加大气压个。
可列出方程、
(教师引导学生列出方程)
80%x=72
观察比较方程:
(学生根据方程特点填空)
等式的两边的代数式都是_________;每个方程都只含有___个未知数;且未知数的指数是_____
(教师总结)这样的方程叫做一元一次方程.
(教师提问:需满足几个特点,学生回答后总结一元一次方程概念)
1、两边都是整式
2、只含有一个未知数
3、未知数的指数是一次、
(教师引出课题——5.1一元一次方程)
3、(接下来一起将前面所学新知与旧知融会贯通)
1、下列各式中,哪些是方程?哪些是一元一次方程?
(1)5x=0(2)1+3x
(3)y2=4+y(4)x+y=5
(5)(6)3m+2=1–m
(这里需要让学生较快的先找出方程(1)、(3)、(4)、(5)、(6),并说说为什么剩下的不是方程。接着找出其中的一元一次方程,着重说说为什么(3)、(4)、(5)不是呢?引发学生套用一元一次方程三个特点说明,教师要补充的是(3)是二次方程,(4)是二元方程,(5)这种情况左边不是整式,进而进一步再强调一次什么是“元”什么是“次”。(3)错在未知数不能出现2次,(4)错在不能出现两个未知数)
4、概念提升(为了能够游刃有的掌握一元一次方程的概念,我们再对它做一次提升,大家请看下面两个问题。
1、方程3xm-2+5=3是一元一次方程,则代数式m=_____。
2、方程(a+6)x2+3x-8=7是关于x的`
一元一次方程,则a=_____。
(通过概念的强调对这题的理解有很大帮助,题1检验学生对一元一次方程中“一次”的理解,题2检验学生对“一元”的理解)
5、一元一次方程的根
思考:
当y为多少时一元一次方程6=y+4成立呢?(本题学生容易猜想得到,教师引出一元一次方程的解的概念)
一元一次方程的解:
使一元一次方程左右两边的值相等的未知数的值叫做一元一次方程的解,也叫做方程的根。
(引导学生掌握验根的方法,并指导学生完成验根过程书写步骤)
判断下列t的值能不能使方程2t+1=7-t左右两边的值相等、
(1)t=-2(2)t=2
(先让学生口头检验,再叫学生说说得出结论的过程,进而引导学生一步步书写(1)步骤,学生齐答教师需要先板书步骤,完成后投影出示步骤,接下来让学生上黑板书写(2)的验根过程)
解:(1)把x=-2代入方程:
左边=2×(-2)+1=-4+1=-3
右边=7-(-2)=7+2=9
∵左边≠右边
∴x=-2不是原方程的解、
6、尝试-检验法(光会验根还不够,我们还应学习怎样找到一元一次方程的根,大家请看这个问题)
一射箭运动员两次射击的成绩都是整数,平均成绩是6.5环,其中第二次射箭的成绩为9环,问第一次射箭的成绩是多少环?
设第一次的射箭成绩为x环,可列出方程。
(请一学生回答得出的方程)
思考:同学们,请猜想一下,结合实际,x能取哪些数呢?
(学生可能会说出0、到10所有整数都可能若说不出再引导)(每次射箭最多是10环,
而且只能取整数环)(要检验11次有点多,能不能再把范围缩小一点呢?引导学生对比已知的一次成绩与平均成绩的高低,从而得出未知成绩应该比平均成绩小,学生得出可以代入检验7次):由已知得,x为自然数且只能取0,1,2,3,4,5,6、把这些值分别代入方程左边得。(让学生检验得到根,接下来课件梳理验根的结果)
把x为0,1,2,3,4,5,6这些值分别代入方程左边得:
x
0
1
2
3
4
5
64.5
5
5.5
6
6.5
7
7.5
当x=4时,=6.5,所以x=4就是一元一次方程
=6.5的解、
(刚刚我们得出方程根的方法叫)----尝试检验的方法
(投影出示其概念并强调其对于找出方程根的重要意义)
7、收获总结
一元一次方程概念(强调三个特点)
一元一次方程的根(有验根以及尝试检验法找根)
8、时间多余做书本练习
板书设计:
5.1一元一次方程
1解:(1)把x=-2代入方程:
一元一次方程的概念2
3
掌握验根步骤
一元一次方程的解
尝试检验法寻根
方程教学设计 8
教学目标:
1.通过分析具体问题中的数量关系,了解到解方程作为运用方程解决实际问题的需要.正确理解和使用乘法分配律和去括号法则解方程.
2.领悟到解方程作为运用方程解决实际问题的组成部分.
3.进一步体会同一方程有多种解决方法及渗透整体化一的数学思想.
4.培养学生热爱数学,独立思考,与合作交流的能力,领悟数学来于实践,服务于实践. 教学重点:正确去括号解方程
教学难点:去括号法则和分配律的正确使用.
教学方法:引导发现
教学设计:
一、引入:
(读教材156页引例)
引导学生根据画面内容探讨解决问题的方法.针对学生情况,如有困难教师直接讲解.
学生观看画面:两名同学到商店买饮料的情景.
如果设1听果奶x元,那么可列出方程4(x十0.5)+x=20-3
教师组织学生讨论.
教材“想一想”中的内容:首先鼓励学生通过独立思考,抓住其中的等量关系:买果奶的钱+买可乐的钱=20-3,然后鼓励学生运用自己的方法列方程并解释其中的道理.
①学生研讨并交流各自解决问题的过程.
②学生独立完成“想一想”中的问题(2).
二、出示例题3并引导学生探讨问题的解决方法.
引导学生对自己所列方程的.解的实际意义进行解释.
出示随堂练习题,鼓励学生大胆互评.
①独立完成随堂练习.
③四名同学板演.
③纠正板演中的错误并总结注意事项.
1、自主完成例题
2、小组内交流各自解方程的方法.
3、总结数学思想.
三、出示例题4,教师首先鼓励学生独立探索解法,并互相交流.然后引导学生总结,此方程既可以先去括号求解,也可以视作关于(x-1)的一元一次方程进行求解.(后一种解法不要求所有学生都必须掌握.)
1、自主完成例题
2、小组内交流各自解方程的方法.
3、总结数学思想.
四、出示随堂练习题.
①独立完成练习题.
②同桌互相检查.
出示自编练习题:下面方程的解法对不对?如果不对应怎样改正?
①解方程:2(x+3)-5(1-x)=3(x-1)
②解方程:6(x+8)一6=0
①小组间比赛找错误.
②讨论交流各自看法.
③选代表说出错误的原因,并总结解本节所学方程的注意事项.
五、小结
1、做出本节课小结并交流.
2、说出自己的收获.
给予评价:
引导学生做出本节课小结.
七、板书设计
八、教学后记
方程教学设计 9
一、内容与内容分析
内容
一元一次方程—数学活动(人民教育出版社《义务教育课程标准实验教科书`·数学》七年级上册第三章第四节第五课时)。
内容解析
通过前一阶段“再探实际问题与一元一次方程”的学习,学生基本掌握了销售中的盈亏、用哪种灯节省以及球赛积分表问题。在现实生活中还会有由于各方面的原因,需要选择解决问题的最佳方案,例如顾客在购买某种商品时有几种打折的方法,顾客如何选择最佳的优惠方法;在各种工程的招标中,如何选择最佳的投标方案,用较少的投资取得最佳的效益等等,这些问题有的可以应用一元一次方程的知识加以解决。因此,本课既是对前一阶段学习的巩固,又是新的应用和引伸,同时本课作为“数学活动”,这就为数学拓展了空间,可引导学生到生活中实际了解有关数学问题,尝试应用数学知识解决问题,从而使学生在学习中兴趣盎然,获得真知,培养求异思维和创新的精神。
数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活的结合,便会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在知识潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。
教学重点
经历探索具体情境中的数量关系,体会一元一次方程与实际问题之间的数量关系,会用方程解决实际问题.
二、目标和目标解析
1.目标
(1)运用一元一次方程解决现实生活中的问题,进一步体会“建模”思想方法.
(2)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断.
(3)运用所学过的数学知识进行一次市场调查,体会数学知识在社会活动中的应用,提高应用知识的能力和社会实践能力.
(4)通过数学活动,激发学生学习数学兴趣,增强自信心,进一步发展学生合作交流的意识和能力,体会数学与现实的联系,培养学生求真的科学态度.
2.目标解析
(1)通过活动一,让学生以新闻播报的形式引出本节课的活动1,创设问题情境,调动学习兴趣,学生进一步体会一元一次方程和实际问题的关系;
(2)通过活动二,通过查阅资料,小组交流讨论,探究了解未知的领域与知识!运用一元一次方程解决现实生活中的问题,进一步体会“建模”思想方法,激发学生学习数学兴趣,增强自信心;
(3)通过活动三,把事先借的报刊、图书拿出来,再收集一些数据,分析其中的等量关系,编成问题,看看能不能用一元一次方程解决这些问题,使学生运用所学过的数学知识进行一次市场调查,体会数学知识在社会活动中的应用,提高应用知识的能力和社会实践能力;
(4)通过活动四,了解了杠杆平衡规律,并运用规律求杠杆平衡时的支点位置;另一方面体会了数学实验对学习的帮助与启发,进一步认识到方程在实际中的广泛应用,进一步发展学生合作交流的意识和能力,体会数学与现实的联系,培养学生求真的科学态度。
三、教学问题诊断分析
在本节课的教学过程中,老师只是起到一个组织者,引导者,合作者的作用,所有结论由学生通过动手实验、合作交流、主动发现,这对学生的分析问题,解决问题,表达能力等各方面能力要求较高。本节课两个活动学生生活中的经验不多,大多属于陌生领域与知识,需要学生在实验交流过程中动脑、动口、动手,需要边学习,边应用,有一定难度。由于生活中的`数据较大,在计算上也会给学生带来困难。
教学难点
明确问题中的已知量与未知量间的关系,寻找等量关系.
四.教学支持条件分析
ppt、白板交互、微课、实物投影
五、教学过程设计
1.数学活动1 创设情境,导入新课
播报员播报新闻报道:统计资料表明,山水市去年居民的人均收入为11664元,与前年相比增长8%,扣除价格上涨因素,实际增长6.5%.
你理解资料中有关数据的含义吗?如果不明白,请通过查阅资料或请教他人弄懂它们,根据上面的数据,试用一元一次方程求:
(1)山水市前年居民的人均收入为多少元?
(2)在山水市,去年售价为1000元的商品在前年的售价为多少元?(精确到0.1元)
(学生先独立思考、再小组讨论,几分钟后展示成果。本题学生对提议的理解有一定的困难,先理解本题不懂的数据含义)
师引导:说说“增长8%”和“扣除价格因素,实际增长6.5%”的意思;
生回答:通过查阅资料或其他方式解释.
师指明:你能利用这些数据之间的关系从中再计算出一些新的数据吗?
生回答:(1)增长率的公式:(去年人均收入-前年人均收入)前年人均收入=8%,即去年人均收入=前年人均收入(1+8%)
(2)去年价格上涨率=8%-6.5%=1.5%
生独立做,后展示结果.
(1)解:设山水第前年居民人均收入为x元
列方程(1+8%)x=11664
解得x=10800
答:山水市前年居民的人均收入为10800元.
(2)解:设前年的售价为x元
(1+1.5%)x=1000
解得x≈985.2元
答:在山水市,去年售价为1000元的商品在前年的售价为985.2元.
师生共同解决问题.
练习:数据表明:从19xx年至20xx年,虽然国有企业的户数减少了,但国有及国有控股工业企业完成的工业增加值在不断增长,到20xx年底已经升到14652亿元,比上一年增长11.67%,比全国各行业的增加值年均增长高出2.37个百分点。
你能算出20xx年国有控股工业企业的工业总产值吗?还能算出全国其它行业的工业产值的增长百分比吗?经调查,20xx年全国其它行业的工业产值是18895亿元,你能计算出20xx年的总产值吗?
【设计意图】把生活中的新闻报道的内容为问题,一方面锻炼学生运用方程解决问题的能力,另一方面引导学生关注新闻中隐含的数学问题,进一步体会数学在生活中的应用.这种形式也激发了学生自主学习,深入探究的热情,也有利于提高分析问题和解决问题的能力。
活动二.动手实践、探索新知
播报员播报新闻报道:阿基米德曾说过:“假如给我一个支点,我就能撬动整个地球!”进而介绍阿基米德的杠杆原理.
用一根质地均匀的木杆和一些等重的小物体,做下列实验:
(1) 在木杆中间处栓绳,将木杆吊起并使其左右平衡,吊绳处为木杆的支点;
(2) 在木杆两端各悬挂一重物,看看左右是否保持平衡;
(3) 在木杆左端小物体下加挂一重物,然后把这两个重物一起向右移动,直至左右平衡,记录此时支点到木杆左右两边挂重物处的距离;
(4) 在木杆左端两小物体下再加挂一重物,然后把这三个重物一起向右移动,直至左右平衡,记录此时支点到木杆左右两边挂重物处的距离;
(5) 在木杆左边继续加挂重物,并重复以上操作和记录.
想想可以怎样替代实验?根据记录你能发现什么规律?
师引导:没有木杆,重物等实验用具,我们可以设计替代实验。
生:小组交流设计,几分钟展示:1.支点不动,重物移动. 2.支点移动,重物不动
师介绍:展示两种试验方法,及数据.
师问:根据记录你能发现什么规律?
生:思考回答。
师问:1.(支点不动,重物移动)如图,在木杆右端挂一个重物,支点左边挂n个重物,并使左右平衡.设木杆长为l cm,支点在木杆中点处,支点到木杆左边挂重物处的距离为x cm,把n,l作为已知数,列出关于x的一元一次方程. x
l
2.(支点移动,重物不动)如果直尺一端放一枚棋子,另一端放n枚棋子,支点应在直尺的哪个位置?设直尺长为L,用一元一次方程求解。
【设计意图】
活动2是动手实验与动脑分析相结合,通过简单实验发现杠杆的平衡条件,并根据这个条件,列一元一次方程,解决问题。问题中有字母n,l作为已知数,进行推导计算,为物理学科的公式推导积累经验.
说明:本节课的教学是以创设情景——活动探究——展示交流——反思评价的方式展开。突出一个“活”字,重在一个“动”字,落实一个“用”字。通过活动,让学生感受数学存在于生活又服务于生活。
布置作业。
请收集一些重要问题(例如气候、节能、经济等)的有关数据,经过分析后编出可以利用一元一次方程解决的问题,并正确的表述问题及其解决过程.
六、目标检测设计
小明和小红到公园玩跷跷板游戏,可是他们俩坐在跷板上怎么也平衡不了。现在知道小明的体重是30千克,小红的体重是27千克,跷板长3.8米。你能帮他俩解决这个问题吗?
【设计意图】
对本节重点内容进行现场检测,及时了解教学目标的达成情况。
方程教学设计 10
教学内容:P64-65的练习十二第4-8题。
教学目的:
1、使学生进一步掌握列方程解答“已知一个数的几分之几是多少求这个数”的简单实际问题。
2、使学生在解决问题方法的的过程中,进一步培养学生的数学思维能力。
教学重点:能正确地列方程解答简单的实际问题。
教学难点:能正确找出等量关系。
教学准备:教学光盘
课前研究:复习“列方程解答简单的实际问题”,注意在解分数方程题过程中应该注意些什么?
教学过程:
一、复习:
1、交流课前研究
2、补充:
分析数量关系:
(1)一桶油,用去了。
(2)十月份比九月份节约用水。
(3)男生人数的正好是女生的人数。
学生在小组里说说数量之间的关系。
集体交流,教师板书数量关系式。
看着第(3)个数量关系式讨论:如果知道男生的人数,怎么求女生的人数?如果知道女生的人数,怎么求男生的人数?
二、综合练习:
1、练习十二第4题
学生独立完成后集体订正,订正时重点交流错例的原因。
2、练习十二第5题
读题后理解题意,并找出等量关系:原来水稻每公顷产量×=新杂交水稻每公顷产量
学生独立列式计算后再集体订正。
3、练习十二第6题
理解“10小时行了全程的”是指10小时行驶的路程相当于全程的。也可以理解为已经行驶的.时间相当于行驶全程所需时间的。
学生独立完成后全班交流。
4、练习十二第7题
弄清“”是把这袋面粉重25千克看作单位“1”的。
第(1)题要求“吃了多少千克”,就是求25千克的是多少;
第(2)题中的数量关系是“这袋面粉的千克数×=15”
比较上下两题有什么区别?
5、练习十二第8题
学生独立完成后集体交流。
比较两个问题的联系和区别。
明确:第1小题是求“一个数的几分之几是多少”,可以用乘法计算;第2小题是“已知一个数的几分之几是多少求这个数”可以列方程解答。
三、课堂总结:
通过今天的练习,你还有哪些地方掌握的不够的吗?有什么经验要向大家介绍吗?
四、作业:
课内:补充习题P46第3题;P47第3、4题。
课外:天天练P40
弹性作业:
1、直接写出得数。
2÷ = 3 3 × = ÷ = 3 ÷ =
2、 解方程。
ⅹ = 18 ⅹ= ⅹ = ⅹ= ⅹ÷ = ⅹ=
3、 (1)一只书包65元,一枝钢笔的价钱是书包的 。一枝钢笔多少元钱?
65× =26(元) 答:一枝钢笔26元钱。
(2)一枝钢笔26元,是一只书包价钱的 。一只书包多少元钱?
ⅹ=26 ⅹ=65 答:一只书包65元钱。
方程教学设计 11
教学内容:人教版小学数学教材五年级上册第113页第3题及相关练习。
教学目标:
(一)知识与技能
让学生进一步认识用字母表示数的意义,体会代数的思想;会解方程,进一步明确方程、解方程和方程的解等概念;会用列方程的方法解决问题。
(二)过程与方法
能用等式的基本性质解简易方程,体会化归思想。
(三)情感态度与价值观
进一步培养学生根据具体情况,灵活选择算法的意识和能力以及缜密的思维方法。
目标解析:简易方程的复习分为三部分:用字母表示数、解简易方程、列方程解决问题。本学期是学生首次正式学习代数知识,这些代数知识对于学生将来进一步的学习有着重要的作用。复习时要结合等式的性质使学生进一步巩固解方程的方法。列方程解决问题的复习重点是让学生理解题中的数量关系,并根据等量关系确定未知量、列出方程、解方程从而解决问题。同时还要鼓励学生根据自己的理解列方程,以培养学生灵活解题的能力和缜密的思维方法。
教学重点:解简易方程,根据等量关系列方程解决问题。
教学难点:根据等量关系列方程解决问题。
教学准备:课件。
教学过程:
一、复习用字母表示数
1.课件出示练习:
你能用含有字母的式子表示下面的.数量关系吗?独立完成。
(1)的7倍;(2)的5倍加6;(3)5减的差除以3;
(4)200减5个;(5)比7个多2的数;
(6)边长为的正方形的面积与周长。
2.指名汇报:说说你为什么这么写?
让学生进一步巩固用字母表示数的知识,同时注意到:数字与字母之间的乘号可以不写,数字要写在字母前面,一个数平方的意义与写法等。
3.学生订正自己的答案。
【设计意图】通过习题的练习唤醒学生对用字母表示数的知识的回忆,再通过说一说理由来进一步回顾这一知识需要注意的地方,理解用字母表示数的意义。
二、复习简易方程
1.谁能说一说什么叫方程?(含有未知数的等式叫方程。)
2.一个方程必须满足几个条件?(两个条件:既要有未知数,还要是等式,缺一不可。)
3.判断下面哪些式子是方程?是方程的请解出方程。
(1);(2);(3);
(4);(5)3+5=8。
解析:
(1)有未知数,但不是等式;(2)是方程;(3)是不等式;
(4)有未知数,但不是等式;(5)是等式,但没有未知数。
学生独立解方程:。
指名上黑板解方程,其他同学在练习本上完成。
教师评价,帮助学生结合解题进一步认识方程、解方程和方程的解的概念。
【设计意图】复习简易方程,首先要了解什么是方程,通过对概念的理解找到一个方程需要满足的条件:①含有未知数;②是等式。再通过对具体式子的判断达到巩固和灵活运用的目的。学生独立解方程后教师再进行评价,目的是可以检验出学生对所学知识的掌握情况,可以做到有的放矢、有针对性地进行复习,并结合解题的过程来理解“解方程”和“方程的解”的概念。
三、复习列方程解决问题
教师:认识了方程,学会了解方程,接下来我们就可以用方程来解决问题了。
1.根据图示解决问题:
(1)根据图意列等量关系:;
(2)让学生说说是怎么想的。
(3)解方程。
(4)评价总结。
2.根据题意解决问题:
(1)课件出示教材第113页第3题第(3)小题,了解题意。
(2)列出等量关系:地球赤道的长度×7+2=光每秒传播的距离。
(3)列方程解决问题:
解:设地球赤道大约长万千米。
答:地球赤道大约长4万千米。
【设计意图】列方程解决问题,通过两种方法来进行理解:一种方法是看线段图列出等量关系,另一种方法是根据文字信息列出等量关系,将方程运用到生活中,让学生感受用方程解决问题的简便性。
四、练习巩固
1.请用字母表示下面的数量关系(课件出示教材第113页第3题第(1)小题)。
2.解下列方程(课件出示教材第113页第3题第(2)小题)。
(1)请四名同学板书,每人一题,其他学生在练习本上完成。
(2)学生评价总结。
3.用方程解决问题。
(1)课件出示教材第118页练习二十五第18题。
解:设现在可以做个毛绒兔。
列出等量关系:后来做毛绒兔的材料=原来准备做毛绒兔的材料,即后来做一个毛绒兔的材料×可做的数量=原来做一个毛绒兔的材料×可做的数量,可得
答:现在可以做190个毛绒兔。
(2)课件出示教材第118页练习二十五第20题。
这个鱼塘的图形是一个梯形,鱼塘的两条平行的边分别是这个梯形的上底和下底,求平行线两岸的宽度即是求这个梯形的高。根据求梯形面积的公式可以列出等量关系:
(上底+下底)×高÷2=梯形面积。
解:设两岸的宽度为米。
答:两岸的宽度为47米。
【设计意图】第1题既练习了用字母表示数的知识,又结合了等量关系来列式;第2题解方程,涵盖了加、减、乘、除四种情况,可以分别板书将学生常犯的错误呈现出来,给学生巩固和再次反思的机会;第3题用方程解决两个问题,第(1)题根据不变的量找到等量关系,第(2)题根据面积公式找等量关系,让学生从不同的角度学会列出含有未知数的等式。
五、全课总结
说说这节课你有什么收获?需要注意的问题有哪些?
方程教学设计 12
教学目标
①理解一次函数与一元一次方程的关系,会根据一次函数的图象解决一元一次方程的求解问题。
②学习用函数的观点看待方程的方法,初步感受用全面的观点处理局部问题的思想。
③经历方程与函数关系问题的探究过程,学习用联系的观点看待数学问题的辩证思想。
教学重点与难点
重点:一次函数与一元一次方程的关系的理解。
难点:一次函数与一元一次方程的关系的.理解。
教学设计
导语
前面我们学习了一次函数。实际上,一次函数是两个变量之间符合一定关系的一种互相对应,互相依存。它与我们七年级学过的一元一次方程,一元一次不等式,二元一次方程组有着必然的联系。这节课开始,我们就学着用函数的观点去看待方程(组)与不等式,并充分利用函数图象的直观性,形象地看待方程(组)不等式的求解问题。这是我们学习数学的一种很好的思想方法。
注:点明学习本节内容的必要性:
(1)函数与方程、方程组、不等式有着必然的联系;
(2)用函数的观点看待方程、方程组、不等式是我们学数学应该掌握的思想方法。给学生一个本节内容的大致框架。
引入新课
我们先来看下面的两个问题有什么关系:
(1)解方程2x+20=0。
(2)当自变量为何值时,函数y=2x+20的值为零?
问题:
①对于2x+20=0和y=2x+20,从形式上看,有什么相同和不同的地方?
②从问题本质上看,(1)和(2)有什么关系?
③作出直线y=2x+20(建议课前作出,以免影响本节课主题),看看(1)与(2)是怎么样的一种关系?
注:用具体问题作对比,帮助学生理解。
在学生议论的基础上,教师结合教科书38页揭示:(1)与(2)实际上是同一个问题。
探讨归纳
从前面的讨论我们可以看到:一个一元一次方程的求解问题,可以与解某个相应的一次函数问题相一致。你认为在一般情况下,怎样的解一元一次方程问题与怎样的一次函数问题是同一的?
学生小组讨论(鼓励学生用自己的语言说明为什么同一?图象上怎么看?函数方程形式上怎么看?)
师生共同归纳(教科书39页)(略)
让学生在探究过程中理解两个问题的同一性。
练习巩固
1.以下的一元一次方程问题与一次函数问题是同一个问题
序号
一元一次方程问题
一次函数问题
1解方程3x—2=0当x为何值时,y=3x—2的值为O?
2解方程8x+3=0
3当x为何值时,y=—7x+2的值为O?
解:(略)
注:第4题为开放题,鼓励学生有自己的想法与见解。如“解方程3x+5=8”与“当x为何值时,函数y=3x+5的值为8”是同一个问题等等
2。根据下列图象,你能说出哪些一元一次方程的解?并直接写出相应方程的解?
解:5x=0的解是x=0;x+2=0的解是x=—2;—3x+6=0的解是x=2;
由图象可得函数关系式是y=x—1,从而得出x—1=0的解是x=1。
注:此处练习为补充。可以帮助学生在积累了一些理性认识的基础上,增加更多的形象
了解。
综合应用
教科书P.139例1(略)
对于解法2,还可以拓展成:对于函数y=2x+5,当y=17时,求x的值。鼓励学生进一步思考。
注:例1可看成是一次函数与一元一次方程关系的一个直接应用。
归纳提高
框图化小结:
从数的角度看:
求ax+b=0(a≠O)的解x为何值时y=ax+b的值为0
从形的角度看:
求ax+b=0(a≠0)的解确定直线y=ax+b与x轴的横坐标
从数和形两方面总结,帮助学生建立数形结合的观念。
布置作业
教科书P.145习题11。3第1、2题。
方程教学设计 13
教材简介:
本单元的主要学习内容是用字母表示数和解简易方程,以及简易方程在解决一些实际问题中的运用。
本单元的内容分为两节,第一节的主要内容是用字母表示数、表示运算定律、计算公式和数量关系。第二节的主要内容是方程的意义,等式的基本性质和解简易方程,以及列方程解决一些比较简单的实际问题。这些内容的编排体系如下表(见底部附件)。
单元教学目标:
1、使学生初步认识用字母表示数的意义和作用,能够用字母表示学过的运算定律和计算公式,能够在具体的情境中用字母表示常见的数量关系。
2、使学生初步了解方程的意义,初步理解等式的基本性质,能用等式的性质解简易方程
3、使学生感受数学与现实生活的联系,初步学会列方程解决一些简单的'实际问题。
教学建议:
1.关注由具体到一般的抽象概括过程。
2.用好教材资源,适当扩展联系实际的范围。
3.重视良好学习习惯的培养。
课时安排:
1.用字母表示数3课时
2.解简易方程12课时
第一课时:用字母表示数(一)
教学内容:
教材P44-P46例1-例3做一做,练习十第1-3题
教学目的:
1、使学生理解用字母表示数的意义和作用。
2、能正确运用字母表示运算定律,表示长方形、正方形的周长、面积计算公式。并能初步应用公式求周长、面积。
3、使学生能正确进行乘号的简写,略写,知道一个数的平方的含义及读写法。
4、在学习中感受到用字母表示数的优越性,激发对数学学习的兴趣。
教学重点:
理解用字母表示数的意义和作用
教学难点:
能正确进行乘号的简写,略写。
教学准备:
投影仪
教学过程:
一、初步感知用字母表示数的意义
教学例1。
1、投影出示例1(1):
引导学生仔细观察两行图中,数的排列规律。
问:每行图中的数是按什么规律排列的?(指名口答)
2、学生自己看书解答例1的(2)、(3)小题
提问请学生思考回答:这几小题中,要求的未知数表示的方法都有一个什么共同的特点?(都是用一些符号或字母来表示的)
师:在生活中、在数学中,我们经常用字母来表示数。今天这节课我们一起来学习用字母表示数。
问:你还见过那些用符号或字母表示数的例子?
如:扑克牌,行程A、B两地,C大调…….
二、新授:
1、学习用字母表示运算定律和性质的意义和方法。
教学例2:
(1)学生用文字叙述自己印象最深的一个运算定律。
(2)如果用字母a、b或c表示几个数,请你用字母表示这个运算定律。
(3)当用字母表示数的时候,你有什么感觉?
看书45页“用字母表示…….”这一段。
(4)你还能用字母表示其它的运算定律和性质吗?
请学生在草稿本上能写几个写几个,体会用字母表示数的优越性。根据学生写的情况师逐一板书。(学生在表示时,一定要清楚表示的是哪一个运算定律)
加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
减法的性质:a-b-c=a-(b+c)
除法的性质:a÷b÷c=a÷(b×c)
2、教学字母与字母书写。
引导学生看书P45提问:在这些用字母表示的定律、性质中,哪一个运算符号可以省略不写?是怎样表示的?(请一生板演)
a×b=b×a(a×b)×c=a×(b×c)
可以写成:ab=ba或ab=ba(ab)c=a(bc)或(ab)c=a(bc)
(a+b)×c=a×c+b×c
可以写成:(a+b)c=ac+bc或(a+b)c=ac+bc
其它运算符号能省略吗?数字与数字之间的乘号能省略吗?为什么?(小组同学之间互相说说)师强调:只有字母与字母、数字与字母之间的乘号才可以省略不写。
3、教学用字母表示计算公式的意义和方法。
教学例3(1):
师:字母不但可以表示运算定律还可以表示公式、及数量关系。
用S表示面积,C表示周长,a表示边长你能写出正方形的面积和周长公式吗?
学生先自己试写,然后小组交流,看书讨论。
问:
(1)两个相同字母之间的乘号不但可以省略,还可怎样写?怎样读?表示的含义是什么?
(2)字母和数字之间的乘号省略后,谁写在前面?
a2表示什么?2a表示什么?
师强调:a表示两个a相乘,读作a的平方。
口答结果:3的平方5的平方6的平方
省略数字和字母之间的乘号后,数字一定要写在字母的前面。
4、练习:省略乘号写出下面各式。
x×xm×m0.1×0.1a×63×nχ×8a×c
教学例3(2):
学生自学并完成相关练习。两生板演。师强调书写格式。
三、巩固练习:
1、完成做一做1、2题。
要求:第1题在书上完成。第2题先写出字母公式,再应用公式计算。
2、练习十:第1-3题先独立解答后,再集体评议。
方程教学设计 14
目标预设:
1.使学生初步理解方程的意义,知道方程的解、解方程的意义和验算的方法,能正确解方程。
2.培养学生的分析比较能力和再创造意识。
3.培养学生认真审题,自觉检验的良好学习习惯。
过程预设:
一、情境创设
六一儿童节快到了,文峰大世界推出学生用品大展销,这里是选取其中的几件。
商品上标价分别为(字母表示的为商品价格不知道的):
上衣 65元 巧克力 y元
钢笔 40元 皮鞋 60元
书 x元 文具盒 20元
如果拿100块钱去买商品,用钱的结果会有哪几种不同的情况?
(三种情况,大于、小于、等于)
如果请你自己购物的话,你准备选择什么
把你的购买情况与用钱结果用式子表示出来。纯茨隳苄炊嗌伲?BR>选取生列出的算式: 65+40=100 65+x<100 y+60 x+y等等
二、观察讨论:把上面的式子分类,你认为可以怎么分?
1.小组讨论,介绍如何分。
2.教师指出:像这些用等号连起来的算式我们都叫它等式。而含有未知数的等式叫方程。师板书。
3.今天我们就来研究方程。(板书课题)
4.提问:这里哪些算式是方程?根据学生的回答师用集合圈圈出方程。
知道了什么是方程,你能写出一些方程来吗?试试看,在随练本上写出一个方程。
5.汇报:说说你写的.方程是怎样的?
提问:如65+x是方程吗?为什么?
由此看出:具备方程的两个条件是什么?
师:65+x=100、65+58=123都是等式,一个是方程,一个不是方程,方程和等式之间有什么关系?
可以用一句话或者图来表示吗?
三、方程史话
说起方程,老师这儿还有一个故事呢:我们都知道《九章算术》是我国著名的《算经十书》之一,是十部算经中最重要的一部。《九章算术》共收有246个数学问题,绝大多数内容是与当时的社会生活密切相关的。其中方程术是《九章算术》最高的数学成就,是它在世界上最早提出了方程的概念,并系统地总结了方程的解法,比我们现在所熟知的希腊丢番图方程要早三百多年。
《九章算术》反映出我国古代数学在秦汉时期就已经取得在全世界领先发展的地位,作为一部世界科学名著,它在隋唐时期就已传入朝鲜、日本。现在,它已被译成日、俄、德、法等多种文字在世界上广泛流传。
听了这段话,你有什么感想?
四、解方程
1.师:大家知道这些方程中的未知数的值是多少吗?你是怎么知道的?
生练习求未知数,指名板演。(两题)
师讲解:这是我们学过的求未知数x,当x=?时这个方程两边才相等,所以我们把x=?就叫做是这个方程的解。提问:另一道方程的解是多少?
刚才我们求这个方程的解的过程就是解方程。因此,我们在解方程时写个“解”字。师补充写解。
其实我们以前求未知数x的过程,实际上就是在解方程。
2.选出方程的解,并画上横线。
X+8=30 (x=38 x=22)
X=5是方程( )的解。15x=3 6x=30
12-x=8 (x=4 x=20)
提问:你是怎样找出方程的解的?
3.检验
师:我们在解方程的时候,也可以用这种代进去的方法算一算,如果它的等式结果和右边相等,说明是正确的,这种就是方程的检验方法。
请大家把书翻到80页,看一下方程的检验过程。
需要注意的是检验的格式,自己任意挑选一题进行检验。
五、巩固练习
做个游戏,好吗?
1.分组出五题判断题,写出式子,可以是方程,也可以不是方程的,考考其他组,看看哪个组编的题最好。
2.求出最好这组中的两道方程中的解,并检验。
方程教学设计 15
教学内容:书本74页例2
教学目标:分析稍复杂的两步计算的应用题的数量关系,寻找等量关系式。
教学重难点:找等量关系式列方程。
教学过程:
一、忆旧引新
说说下面各题的等量关系:
如:①、红花是黄花的`3倍
②、红花比黄花的3倍多2朵。(等)
二、兴趣谈话引入新例(74页例2),后出示情景图。
1、让生说说从图中知道了哪些信息?要解决什么问题?
2、让生根据信息和问题列出题中的等量关系式,列出方程并解方程。
板书:黑色皮的块数×2-4=白色皮的块数
解:设共有x 块黑色皮。
2x -4=20
2x=20+4
2x =24
x=24÷2
x =12
答:-----------------。
3、引导生用不同方法列方程。
4、小结:列方程解决问题的主要步骤:①弄清题意,设未知量为x 。②分析题意,找等量关系。③根据等量关系列出方程。④解方程。⑤检验。
三、巩固拓展:
1、1.根据方程列出等量关系式。
粮店运来72吨大米,比运来的面粉的3倍多12吨。运来面粉多少吨? 根据( ),列方程:3x +12=72
根据( ),列方程:72-3x =12
2.先说说下列各题的数量关系,再列方程解决问题。
花布每米35元,比黄布的3倍少12元。黄布每米多少元?(提示取值)
四、作业:书本第75~76页第5、6、9题。
教学反思:
本节课是用方程解稍复杂的应用题,是在学生已有知识经验的基础上进行学习的,都是抓住解题关键,即先找出题里的等量关系,再根据等量关系列出方程并解答,再而检验。学生知道了用方程解答应用题的步骤。只是部分学生未会找题里等量关系,所以仍需多练。
【方程教学设计 】相关文章:
解方程教学设计08-06
《简易方程》教学反思11-07
《方程的意义》教学反思09-04
数学解方程教学反思11-03
方程教学反思15篇06-23
一元二次方程教学设计07-31
一元二次方程的解法教学设计01-21
方程的意义教学反思15篇08-14
五年级方程教学反思10-07