《可能性》教学设计
作为一位不辞辛劳的人民教师,通常需要用到教学设计来辅助教学,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是小编精心整理的《可能性》教学设计,欢迎阅读与收藏。
《可能性》教学设计1
教学内容:
人教版义务教育课程标准实验教材五(上)第99-100页。
教材分析:
“可能性”的教学,学生在三年级时已经初步体验有些事件的发生是确定的,有些则是不确定的。本节课的内容是在三年级上册的基础上的深化,使学生对“可能性”的认识和理解逐渐从定性向定量过渡,不但能用恰当的词语(如“一定”“不可能”“可能”“经常”“偶尔”等)来表述事件发生的可能性大小,还要学会通过量化的方式,用分数描述事件发生的概率。
教学目标:
1、体验事件发生的等可能性以及游戏规则的公平性及它们的关系,会求简单事件发生的可能性。
2、能根据指定的要求,设计公平的游戏方案。能对简单事件的可能性做出预测。
3、培养概率素养,增强对随机思想的理解。培养公正、公平的意识,促进正直人格的形成。
4、在游戏中体验学习数学的乐趣,提高学生学习数学的积极性。
教学重点:
体验事件发生的等可能性以及游戏规则的公平性及它们的关系,会求简单事件发生的可能性。
教学难点:
游戏公平性的判断,设计公平的游戏方案,能对简单事件的可能性做出预测。
教学方法:
引导探究法、实验法、小组合作交流法
教学准备:
CAI课件、长方体和正方体盒子各一个、每小组准备一枚硬币和活动记录表一张、全班学生名单(课前把每个学生的名字写在小纸片上折好)
教学过程:
一、创设情境,导入新课:
我校一年一度的秋度趣味运动会就要在11月下旬召开了,在这次趣味运动会上,我校设计了这些活动项目,请看大屏幕——足球赛、跳棋比赛、老鹰捉小鸡、摸球。为了这次运动的成功举办,老师们正在设计各项活动的规则,同学们也积极地进行训练,让我们一起去看看那热闹的场面吧——(课件显示:足球赛场面)
二、自主探究,深入体验:
1、你认为抛硬币决定谁开球公平吗?为什么?说说你的想法。
过渡并揭题:我们在抛硬币的时候可能会出现正面,也可能会出现反面,所以这是一件不确定的事,今天我们一起来研究不确定事件发生的可能性。(板书课题:可能性)
2、既然大家都认为是公平的.,请你想一想,正面朝上的可能性用一个什么样的数表示合适呢?
如果用一个简单的分数表示就是……(1/2)
那反面朝上的可能性是多少?
3、如果抛10次,你认为正面朝上的次数可能是多少?还可能是多少?如果抛40次呢?
过渡:刚才我们通过研究,认为抛硬币的方法来决定谁先开球是公平的,下面我们来玩一玩。
4、小组合作:
课件出示温馨提示:
①6人一小组分工合作。其中:
1人抛硬币;1人报抛的结果;1人监督报的是否正确;
1人用“正”字法填写记录表;1人监督填写的记录表是否真实;1人向全班汇报小组实验情况。
②每组抛40次,抛硬币时高度适中,不要用力过猛。
③思考:正面朝上的次数与总次数之间的关系。
5、汇报交流:
学生汇报抛的结果,教师填写表格。
组别抛硬币总次数正面朝上的次数反面朝上的次数
通过观察这个表格,你有什么发现?
正面朝上的次数与反面朝上的次数相等吗?为什么会出现这个结果?
6、我们继续抛下去,会是怎样的一个结果呢?历史上很多科学家也做过这样的实验。(课件出示)
随着抛掷次数的不断增加,正面朝上的次数有什么特点?
三、联系实际,理解应用:
1、三人跳棋赛
这样设计转盘公平吗?怎样设计这个转盘才公平?
是这样吗?为什么这样是公平的?
如果,转动转盘90次,估计大约会有多少次指针是停在红色区域?说说你这样估计的理由。
2、老鹰捉小鸡
你们玩儿过吗?怎么玩儿的?
我们学校是这样设计游戏方案的(课件出示):
6名同学玩老鹰捉小鸡的游戏,老师分别在长方体和正方体的盒子各面分别写上1,2,3,4,5,6。每人选一个数,然后任意掷出盒子,朝上的数是几,选这个数的人就当“老鹰”。
你认为选哪个盒子做游戏公平?
我们也选6名同学下课了做这个游戏吧!选谁呢?这样吧,我们抓阄来决定吧。你认为抓到你的可能性是多少?(指名回答)
四、拓展延伸,加深理解:
摸球:
课件呈现画面:个黑球,个蓝球。
(1)你认为摸到黑球的可能性是多少?
(2)摸到黑球的可能性是1/10,桌子上该怎么放球?
(3)摸到黑球的可能性是蓝球的1/2,桌子上该怎么放球?
五、回味新知,反思小结:
通过今天的学习,你学会了什么?生活中也有一些可能性事件,有些是公平的,有些是不公平的,希望同学们都做一位有心人,认真观察,到生活中发现更多的数学知识。
板书设计:
可能性
1/2黑:
1/3蓝:
可能性:黑球是蓝球的1/2
《可能性》教学设计2
教材分析
人教版三年级上册的《可能性的大小》是属于统计与概率里中概率的起始知识之一,本节课主要目标是让学生知道随机事件的可能发生的结果,并通过简单的试验让学生体会事件发生的可能性是有大小的,概括出初步判断可能性大小的方法,体会单次事件发生的不确定性,并进行运用。其中让学生体会事件发生的可能性大小,理解数量越多发生的可能性越大,数量越少发生的可能性越小是本节课的重难点,因为对于这点认识学生的生活经验高于数学经验,如果在实验的过程中,发生小概率事件,也就是说数量少的反而出现的次数多时,学生可能将生活经验与之相联系,产生认识的迷惘,一旦处理不好会使整节课陷入混乱状态。因此处理起来要慎之又慎,只要引导学生了解试验少的时候,试验结果不一定与预测的可能性大小相符,但随着试验次数的增加,试验结果将越来越接近预测的可能性大小。
学情分析
基于以上的认识,我构建了“从生活中来,到生活中去”的基本设想,打算通过不同情境的创设引导学生去“猜想——验证——感悟”,最终建立起高于生活的可能大小的认识。
从生活中来,就是尊重学生的原有的生活经验,创设“猜球”的情境,勾起学生已有的对于“可能性大小”的认知,初步判断出“数量多的发生的可能性大,数量少的发生的可能性小”。
生活经验要通过验证才能上升到理论认识,而其中的“小概率”事件,是提升原有认知的关键之处。因此,我采用了4:2的比例放球,排除一切干扰因素,组织小组摸球,比较、分析数据,体验概括出当摸球次数少时,是有可能发生小概率事件的,但当摸球次数越多原有猜想就越明显,从而使学生站在了数学的高度。最后,通过“摸奖”游戏,让学生体验随机事件的不确定性,最终完成对“概率”的初步体验。
到生活中去,就是尊重数学的基本使命——去指导,去解决生活中的实际问题。因此,我创设了“闯关游戏”,让数学以生动有趣的形式回归生活,使学生在轻松的氛围里,主动的去运用知识、解决生活问题。
教学目标
1.能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的,概括出初步判断可能性大小的方法。
2.通过体会单次事件发生的不确定性,初步体会频率与概率的区别。
3.通过猜测验证感悟,培养学生大胆的想象力和逻辑推理能力,养成科学的学习态度。
4.通过情境创设,激发学生学习数学兴趣,体会到数学和生活的联系。
教学重点和难点
教学重点:通过简单的试验让学生感悟到事情发生的可能性大小的情况,并能作出判断,进行描述与运用。
教学难点:当小概率时间发生时,如何抓住机会,引导学生知道“当试验少的时候结果可能与预测的可能性大小不相符,但当试验次数不断增加时,结果会越来越接近预测的可能性大小”
教学过程
一、引入可能性大小
课堂引入讲究快、趣,需要用最少的时间调动学生的积极性,引入课题。“猜球”引入可以既增加神秘感,引起兴趣。又可以用最少的时间复习旧知,引出新知。
二、探讨可能性大小
1、小组合作验证猜测结果:这一环节的随机性很强,到底会出现什么情况我们无法料定。因此,我们能做的就是要排除各种干扰因素,准备好比较合理的试验材料,布置好活动的具体要求。其次,就是预设好可能出现的各种情况,有备无患。不断地引导学生将猜想和试验结果相结合,通过分析、比较得出猜想的正确性。
2、体验单次摸球的不确定性
这样设计,可以加大全班学生参与面,激发兴趣,培养发散思维。除了可以体验单次事件发生的不确定性,还可以体验到可能性大小中,质不变量变的情况。
三、运用可能性大小
这样设计,除了调节气氛,还可以预留悬念,为后面的思想教育打好基础。
四、总结:
1、在全班同学的努力下,我们终于闯过了三关。能说说你现在的感受和你的收获吗?
2、师小结出示:知识会带给我们智慧和力量,有了它我们人类才能把不可能变为可能,把有可能的变成很有可能。希望小朋友好好学习,把获取知识的可能性变为最大。加油吧!
这样设计,既可以总领全课,又可以将收获延伸到知识之外。
五年级数学《可能性》教学设计
一、分析教材
(一)教材所处的地位和作用
本课是苏教版小学数学教材四年级上册64到67第六单元第一课时的内容,在此之前,学生已学习了简单的分类和统计知识,为过渡到本节的学习起着铺垫的作用,本节内容是感受确定和不确定现象,为五年级学习可能性的大小打下基础,为学生以后学习概率建立一个概念。
(二)教学目标:
1、知识与技能目标:
(1)使学生初步体验有些事情的发生是确定的,有些则是不确定的,存在各种可能性。
(2)初步能用“一定”、“可能”、“不可能”等词语描述生活中发生的'一些事情的可能性。
2、过程与方法:
(1)创设摸球、摸纸牌游戏、装球的活动,让学生经历事件发生的不确定现象,体会可能。
(2)充分关注学生的学习过程,对积极参与,勇于交流的行为给予充分的肯定和表扬。
3、情感态度和价值观:
通过游戏培养学生学习数学的兴趣,形成良好的合作学习态度。
(三)教学重点、难点以及确定依据
本着新课程标准,在吃透教材的基础上,我确立了如下的教学重点,难点
教学重点:感受简单随机现象的特点,能列举出简单随机现象中所有可能发生的结果
教学难点:能对简单随机现象发生的可能性大小做出定性描述
二、教学过程
环节一:导入
谈话,同学们,上课之前我们玩个游戏吧,(出示一枚硬币、把双手背后、把硬币藏在一只手里,再伸出双拳,让学生猜硬币在老师的哪个手里)?
师:在老师没松手之前,你估计硬币在老师哪只手里?今天这节课我们就一起来学习可能性的知识。(板书:可能性)
环节二:探究可能性以及可能性是有大小的
(一)摸球中体验“可能”
师:同学们,你们玩过摸球游戏吗?(玩过)那我们一起来玩摸球游戏好吗好?(好)摸之前我们一起来明确下摸球的要求,哪位同学愿意来给大家读一下摸球活动的要求(指名回答)现在大家明白要求了吗?(明白了)那开始游戏吧。活动结束之后在黑板上汇总
1、桶里放3个红球3个黄球,请位同学摸一摸,大家记录摸到了什么颜色的球?
在这样的桶里任意摸一个球,可能摸到哪种颜色的球呢?(红球和黄球)指名学生完整的说一说。
小结:任意摸一次,都有两种可能的结果,(可能)摸到红球也(可能)摸到黄球。
2、桶里装5个红球,请位同学摸一摸,大家记录摸到了什么颜色的球?
小结:在这个桶里摸,(一定)摸出红球。
3、桶里装5个黄球,请位同学摸一摸,大家记录摸到了什么颜色的球?
小结:在这个桶里摸,(不可能)摸出红球。
总结:事情分可能发生,一定发生和不可能发生,可能发生称为不确定事件,一定发生和不可能发生称确定事件。(举生活中的例子)
(二)、摸牌中感悟“可能性大小”
师:刚才同学们表现得很棒,看,老师给大家带来了四张扑克牌,分别是红桃A、红桃2、红桃3、红桃4,思考一下从中任意摸一张可能摸到哪一张?摸之前能确定吗?让学生思考在交流。
(不能确定,有四种可能)
师:下面我们把红桃4变成了黑桃4,现在,4张牌中有3张红桃1张黑桃,现在任意摸一张牌,可能摸到哪一张?(红桃A、红桃2、红桃3、黑桃4)摸出红桃的可能性大,还是黑桃的可能性大?(红桃)为什么?(红桃的张数多)
我们同学都同意吗?(同意)那只是我们的猜想,我们要证实我们的猜想,我们需要试一试那我们来进行摸排游戏吧。摸之前老师来给大家明确下摸牌的要求。
这次邀请组长进行合理分工,一人洗牌,一人记录,(用写正字的方法,最后写成数字)另外的人摸五次,共摸40次。
4、组织交流。看到这几组同学的摸排记录,你有什么想法吗?(摸到红桃的次数比摸到黑桃的次数多)
师小结:现在摸出的牌共有4种可能,红桃有3种可能,黑桃有一种可能,所以红桃摸出的可能性大,黑桃的可能性小,说明可能性有大小。
环节三:巩固练习
师:老师想看看我们的同学的掌握情况,我们一起来练一练
1、学生读题后,可以同桌交流,再全班交流,按顺序说一说从每个口袋里任意摸出一个球,可能是红球吗?你是怎样想的?在哪个袋子里摸出红球的可能性大?指名回答(1号和2号可能3号不可能)能说出你的想法吗?哪个袋子摸出红球的可能性最大呢?
2、在下面四张牌中任意摸一张一共有几种可能?(四种)可能摸出什么牌呢?指名回答(梅花6、梅花10、梅花8梅花6)摸出几的可能性最大?因为梅花六有两种可能
摸出梅花10和8的可能性(相等)
3、转盘中也存在着可能性,让我们一起去看看吧
(1)转动哪个转盘,指针偶尔落在红色区域呢?偶尔是什么意思呢(很少可能性很小)
(2)转动哪个转盘指针经常落在红色区域呢?经常是什么意思呢?(很多,可能性很大)
(3)转动哪个转盘,指针偶尔落在红色区域和黄色区域的可能性相等呢?指名回答
环节四:全课小结
今天大家今天表现得十分不错,老师准备送一段话给大家作为奖励我们一起来看一下吧。
今天(可能)你的表现不是很出色,但只要你在今后的学习中多动脑,勤思考,你就(不可能)没有进步,继续努力,相信你(一定)是最棒的,孩子们,加油!
三、板书设计
可能性
可能
一定
不可能
《可能性》教学设计3
教学内容:人教版课程标准实验教科书《数学》五年级上册P99-100,可能性。
教学目标:
1、初步体验事件发生的等可能性以及游戏规则的公平性,会用分数表示事件发生的可能性;
2、通过丰富的游戏活动和对生活中几种常见游戏(或现象)剖析与解释,使学生初步体会数学与生活的紧密联系。
教学重点:体验事件发生的等可能性以及游戏规则的公平性,会用分数表示事件发生的可能性。
教学难点:能按要求设计公平的游戏方案。
教、学具准备:CAI课件;硬币;实验记录表;骰子;六个面上分别写上数字1-6的长方体等。
教学过程:
一、情境导入
师:同学们,你们看过足球比赛吗?还记得足球比赛开始前用什么方法决定哪个队先开球吗?请同学们看屏幕。
课件演示:如下图情境(教科书第99页的情境图)。
师:请观察图片,你们能不能说一说他们是用什么方法决定哪个队先开球的?
师:同学们说得对,他们是用抛硬币的方法决定由哪个队先开球的,那么你们认为用这种抛硬币的方法决定哪个队开球公平吗?
[评析:由足球比赛开球前的情境引出游戏公平性的问题,学生感到自然、熟悉,探究兴趣浓厚。]
二、探究新知
1、动手实验,获取数据。
师:刚才有人认为硬币掉下来时正面朝上和反面朝上的机会相等,觉得抛硬币的方法很公平,也有人认为这样不公平,那到底这种方法公不公平呢?下面就来做一个实验,由大家亲自动手抛一抛硬币,看这种方法到底公不公平,好吗?
师:在开始实验之前,同学们要弄清楚实验要求哦,请看屏幕。
课件出示实验要求:1、抛硬币40次,抛硬币时用力均匀,高度适中;2、以小组为单位分别统计相关数据,填入实验报告单(如下表);3、小组成员分工协作,看哪个小组合作最好,完成得最快!
出现的情况正面朝上反面朝上总次数
出现次数
师:弄清楚实验要求了吗?老师想问大家,第2条中的相关数据是指什么?你们打算如何得到这些数据?
师:很好,我们要得到正面朝上的次数和反面朝上的次数,老师建议你们最好用画“正”字的方法来统计,那就动手开始实验吧!
师:大家做完实验了吗?请各个小组汇报实验结果。
课件出示统计表(如下表),根据学生的汇报教师填入数据。
小组正面朝上反面朝上总次数
1
2
3
4
5
…
合计
2、分析数据,初步体验。
师:请你们认真观察实验数据,发现正面朝上的次数和反面朝上的次数相等吗?
师:对,既有相等的也有不相等的,但正面朝上的次数和反面朝上的次数接近吗?
师:想一想,如果把我们全部小组的实验数据加起来,那么正面朝上的次数和反面朝上的次数还接近吗?
教师把所有小组的正面朝上次数、反面朝上的次数、总次数分别求和。
师:通过分析,我们发现正面朝上的次数和反面朝上的次数仍然是非常接近的。
3、阅读材料,加深体会。
师:如果我们继续抛下去,会是怎样的结果呢?历史上有很多数学家就做过抛硬币的'实验。请看屏幕。
课件出示几位数学家的实验结果(如下表)。
数学家总次数正面朝上反面朝上
德摩根409220482044
蒲丰404020481992
费勒1000049795021
皮尔逊240001201211988
罗曼列夫斯基806403969940941
让学生观察数据,发现正面朝上次数和反面朝上次数很接近。
4、分数表示,科学验证。
师:我们做过了实验,观察了数学家实验数据,发现正面朝上和反面朝上的次数很接近,说明正面朝上和反面朝上的可能性是……?
师:对,它们的可能性相同的,你们能用一个分数表示它们相同吗?
师:通过做实验,你们认为抛硬币决定谁先开球公平吗?为什么?
[评析:让学生在抛硬币的实验活动中体验、理解、感悟事件发生的等可能性和游戏的公平性,并通过对实验结果的观察分析、对实验过程的反思及数学家实验数据验证,使学生不仅体会到感受到事件发生的不确定性而且感受到事件发生的等可能性。]
三、应用拓展
1、师:刚才的学习,你们表现得很棒,学得很认真,现在老师要考考你们,会不会用学到的新知识解决问题,有信心接受挑战吗?
师:好,请看第一题,正方体的各面分别写着1、2、3、4、5、6.掷出每个数的可能性都是……?(出示教科书练习二十第1题)
师:这么多同学举手想回答这个问题,老师也不知道该叫谁回答了。这样吧,我把全班分成三组,分别叫红组、黄组、蓝组,设计一个转盘,转盘上的指针停在哪种颜色上相应颜色的组就获得答题资格,答对就奖一面红旗,看哪个组的组红旗多就算赢,好吗?
课件出示方案一(如下图):转盘上红色占一半,蓝色、黄色各占。
方案一
师:你们觉得这个转盘设计得公平吗?
师:既然大家都认为这个转盘不公平,那怎样设计转盘才公平呢?
师:就按照你们的修改意见,改成三种颜色各占的转盘。
课件出示方案二(如下图)。
方案二
师:设计好转盘后,我们就开始转动转盘决定哪个组来回答第一题,好吗?
转动转盘,决定哪个组回答。
2、师:恭喜你们获得了第一面红旗。我们看下一题,指针停在这四种颜色区域的可能性各是多少?(课本练习二十第2题的第1题)
《可能性》教学设计4
一、教学内容分析
1、教学的主要内容与编写特点
这一单元学习的内容有两个:①用分数表示事件发生的可能性的大小;②按指定可能性大小设计相关方案。本节课主要研究第一个内容,它是本单元学习的基础。
教材创设了摸球的情境,请学生借助5个装有不同数量的黄白两色乒乓球的盒子,讨论以下问题:①分别从这些盒子中任意摸出一个球,说说从不同盒子中摸到白球的可能性;②如果用数表示摸到白球的可能性,可以怎样表示?第一个问题是复习,第二个问题是讨论摸球可能性的数据表示方式。
用数表示可能性的大小,是对事件发生的可能性从定性到定量的一个重要转折。由于概率知识本身比较抽象,学生理解这部分知识有较大的难度。因此,教材安排了学生喜闻乐见的活动,旨在让学生体会到学习这部分知识的必要性,并能运用所学的知识解决现实问题。
2、教材内容的数学核心思想:不确定现象的特点和价值。
3、我的思考
教材编排的优点:借助学生的生活和学习经验,直接分析得到理论概率,避免在实验概率与理论概率的差别中纠缠。但不足的是:①缺乏丰富的现实背景,不能充分感受可能性的大小与生活经验的密切联系,对学习可能性大小的价值体现不够充分;②对分数表示可能性大小的丰富内涵揭示不够,容易导致学生用确定的思维去思考不确定现象,不利于学生随机观念的建立。
这节课研究的是简单的概率知识,而概率是研究随机现象的规律性的科学,小学阶段学习这部分内容,主要是为了培养学生的随机思维,让其学会用概率的眼光观察大千世界,而不仅仅是以确定的、一成不变的思维方式去理解事物。因为概率并不提供确定无误的结论,这是由不确定现象的本质造成的。因此,可能性的学习内容应该是丰富多彩的,也应该是有血有肉的。
为此,本课的教学设计在教学内容的处理方面有以下两点补充:
1、让学生在丰富的现实背景中体会学习用数表示可能性大小的必要性和价值。
2、结合生活现象,帮助学生理解用分数表示可能性的大小和用分数表示其它事物的大小有什么不同。
二、学生分析
1、学生已有知识基础
①分数的初步认识
②客观事件出现的可能性、可能性的大小、等可能性的.认识。
2、学生已有经验、学习该内容可能的困难
在生活中学生接触过很多不确定现象,如收听天气预报、参加抽奖活动、玩扑克牌,玩石头、剪子、布的游戏,掷硬币,掷骰子,看电视上的有奖竞猜活动等,已经有一些相关的活动经验。
我们在前测中了解到,学生一般对用数表示可能性的大小没有太多的困难,但对不确定现象的理解仍然是个难点。比如,7个黄球,1个白球,任意摸一个,不可能摸到白球,因为白球少;前面摸到黄球,后面该摸到白球了。
3、学生学习的兴趣、学习方式和学法分析
学生喜欢探索自己熟悉的、有趣的,有挑战性的问题,喜欢探究的、合作的学习方式。因此,教学设计要充分考虑学生的特点和需要。
4、我的思考:
要使学生不断修正自己的错误经验,建立正确的概率直觉,必须直面学生的错误。一方面借助实验,记录原始数据,并就得出的数据进行讨论。对数据的讨论既能使学生对随机现象的特点加深体会,又能帮助学生澄清一些错误的认识,使学生逐渐体会到随机现象的不确定性。另一方面,确定性的注重因果关系的逻辑思维的干扰使学生认为“任意摸一次,可能性应该一样,不会是百分之八十”,解决这一问题的办法就是唤起学生已有的经验,将生活中结果相等和机会相等的情境放在一起对比,激起学生的认知冲突,让学生在比较中感悟可能性相等的内涵。
三、学习目标
1、通过实验操作、分析推理,丰富对等可能性和不确定现象的理解,进一步认识客观事件发生的可能性大小,能用数表示可能性的大小。
2、初步学习用概率的眼光观察和分析简单的生活现象,发展合情推理能力。
四、教学活动
活动内容
活动的组织与实施(含教师活动和学生活动)
设计意图
时间分配
一、引入
教师出示放有黄白两种颜色乒乓球的盒子,请学生猜摸到的球会是什么颜色,并现场验证、反思。
激发兴趣
2分钟
二、研讨
在透明的玻璃盒中放球,请学生用数表示从盒中摸到黄球和白球的可能性。
初步学习用分数表示可能性的大小,明确可能性大小的范围。
15分钟
三、反思
1、 一个西瓜,两个人分,怎么分公平?
2、 一张电影票,两个人都想去看,怎么处理公平?
在解决实际问题的过程中体会结果相等和机会相等(可能性相等)的同与不同。
5分钟
四、应用
(一)
1、 天气预报降水概率是20%,你会带伞吗?如果是90%呢?
2、 甲药品治愈率90%,乙药品治愈率55%,你选哪家?为什么?
(二)
1、 87页2、3题。
2、 击鼓传花游戏中的学问。
联系学生的生活经验,体会学习可能性大小的价值。
在应用中进一步体会学习可能性大小的价值。
15分钟
五、拓展
提供拓展资料并进行分析
激发学生进一步学习的欲望
3分钟
《可能性》教学设计5
教学内容:
北师大版小学数学教材四年级上册第95页、96页内容。
教学目标:
知识与技能
通过具体的操作活动,让学生直观感受到有些事件的发生是确定的,有些事件的发生是不确定的。
结合具体的问题情景,能用“一定”“不可能”“可能”简单描述事件发生结果。
过程与方法
创设抛硬币、摸白球及机智问答的情况,让学生亲历事件发生的'可能性大不之分。充分关注学生的学习过程,对积极参与、勇于交流的行为给予充分的肯定和表扬。体验数学与生活的联系,培养学生猜想、分析、判断、推理以及语言表达能力和合作学习能力。
情感、态度和价值观
让学生在同伴的合作和交流中获得良好的情感体验,感受到数学与生活的密切联系。让学生在活动过程中懂得数学存在于现实生活中,从而使学生产生积极的情感体验,激发学生学习数学的兴趣。
教学重点:
在具体的活动情景中体验生活中的确定现象和不确定现象。
教学难点:
能用比较规范的数学语言对确定现象和不确定现象进行分析描述。
教具准备:
硬币、若干个红白颜色的乒乓球、两个黑色袋子
教学过程:
一、回顾铺垫,游戏引入
1、师与生玩“剪刀石头布”的游戏
2、导出课题:今天我们一起在游戏中来研究事情发生可能性的情况。(板书:可能性———不确定性)
二、学标展示
通过这节课的学习我要学会用“一定”“不可能”“可能”简单描述事件发生结果。
三、活动体验,探究新知
1、抛硬币活动(研究不确定现象)
a、猜测:硬币落地后是正面还是反面向上?
b、学生分组进行抛硬币活动,观察并记录。
c、小组汇报抛硬币的结果。
d、引导学生用规范的语言描述并小结:我们把像这样的,可能出现的结果不止一种,而使用人们事先不能确定的现象叫做“不确定现象”。
e、在生活中,还有哪些游戏活动具有不确定性的结果,并描述一下。
2、摸球比赛(研究确定现象)
a、指名两位同学上台摸白球比赛,共进行6局,比赛3局后交换再摸。
b、引导学生用“一定”“不可能”来描述从两个袋子摸出白球的情况。
c、教师小结:像这样结果只有一种的情况,我们就用“一定”、“不可能”来描述这种确定现象。
四、达标检测
1、完成练一练第一题,指导学生用规范的语言描述。
2、联系生活,巩固认识完成练一练第二题
五、拓展延伸,迁移应用
用“可能”“一定”“不可能”这些词语说一说生活中的事。
六、收获回顾
指名谈谈本堂课收获
板书设计:
不确定,可能
不确定性,一定,确定,不可能
《可能性》教学设计6
教学目标:
1、初步感受事件发生的可能性是有大小的,了解影响可能性大小的因素,会比较事件发生的可能性大小。
2、学会记录事件发生的结果;形成动手操作能力,以及归纳、判断能力。
3、经历观察、猜想、实验和分析实验结果的过程,体验事件发生的
可能性大小。
4、进一步感受数学与实际生活的紧密联系,体会数学在现实生活中
的应用。
教学重难点:
重难点:理解事件发生的可能性是有大小的并会根据影响因素判断可
能性大小。
教法与学法:
教法:引导演示法。
学法:合作交流,实验验证法。
教学准备:课件、扑克牌等。
教学过程:
一、复习铺垫,迁移导入
课件出示图片:
师:同学们,这里有三个装有小球的盒子(课件出示),如果老师想要一次就能摸出一个白球,你们建议我从哪个盒子里摸呢?
生:从A盒摸。
师:为什么不建议我从B盒或者C盒摸呢?
生:B盒与C盒可能摸出白球,但都不一定一次就能摸出白球。
师:既然B盒和C盒都可能摸出白球,那这两个盒子中哪个摸到的白球可能性较大?为什么?
(生独立思考,小组交流)(生可能回答B盒白球更多一些)
师:真的如此吗?可能性真的.有大小吗?可能性大小又与什么有关呢?今天我们就来研究这个问题。
二、探索新知
1、体验可能性是有大小的。
(1)课件出示教材第45页情境图
师:今天老师带来了一个盒子,盒子里有四个红棋子和一个黑棋子。
问:从中摸出一个棋子,可能是什么颜色?
生:可能是红色,也可能是蓝色。
师:摸出一个棋子,那摸出哪种颜色的可能性大呢?
学生思考,猜测
师:刚刚只是同学们的猜测,而猜测并不能作为依据,我们需要通过实验来证明。我们来试一试吧!
(2)安排实验过程
请一名学生摸棋子,底下的同学们将棋子的颜色大声说出来,一名学生记录。所有学生边观察边思考。
要求:摸出一个棋子,记录它的颜色,然后放回去摇匀再摸,重复20次。
讲解记录方法:制作像这样的一个表格(出示表格),在记录这一竖列用“正”字笔画去记次数,在次数一列用数字写出记录的总结果。
(3)交流记录结果
师:通过实验结果,你们现在有什么想法?
学生交流、讨论
(4)小结:取出红棋子的次数要多些 ,也就是取出红棋子的可能性要大一些。
(5)讨论:再取一次 取出哪种颜色的可能性最大?
2、进一步证实、总结规律。
(1)提出猜想
在每一小组,老师都放了十张扑克牌,其中八张黑的,两张红的,从中摸出一张,摸出的是红色可能性大还是黑色可能性大?为什么?(学生猜想)
(2)实验证明
这仅仅只是同学们的猜想,还需要大家用实验来证明它。
实验要求:组内同学做好分工,其中一个人负责洗牌,一人负责记录,一个人负责汇报,其他组员轮流抽牌,共抽20次。
(3)汇报实验结果
(4)引导小结:从这些实验结果中,你发现了什么规律?
(学生独立思考,小组交流)
教师小结:因为黑桃在总数中占得多一些,所以取出黑桃的可能性要大些。
3、知识总结师设疑:可能性大小与什么因素有关?
(生思考回答)
师总结:以摸棋子为例,可能性的大小与在总数中所占数量的多少有关,在总数中占得数量越多摸到的可能性也就越大;占得数量越少,摸到的可能性越小。
三、巩固练习 (课件出示)
四、课堂小结 学完这节课后,你们能否准确判断可能性的大小?
板书设计:
可能性(2)
可能性的大小与在总数中所占数量有关
多 大
数量 可能性
少 小
《可能性》教学设计7
一、设计思想
本节课学生是在对事情发生的确定性和不确定性有了一定的认识的基础上,来进一步学习事情发生的可能性有大有小。对于事情发生的可能性大小的认识,一定要让学生在自己的亲身经历中感悟、体会、认识,基于这样的理念,设计了一个个的活动,让学生在"猜测-试验-分析数据"的实践活动中感性认识事情发生可能性的大小;然后通过练习进一步让学生认识到什么情况的可能性大,什么情况的可能性小,并检测学生的实际应用能力。
二、教材分析
例4:教科书中在这里设计了另一个摸棋子的试验,使学生进一步体会不确定现象的特点及事件发生的可能性的大小。
①首先,让学生列出简单试验所有可能发生的结果。与例3相比,增加了一种颜色的棋子,这个简单试验可能发生的结果增加到了三个:摸出红棋子、摸出蓝棋子、摸出绿棋子。
需要注意的是,通过例3的教学,学生已经借助试验能够列出简单试验所有可能发生的结果。这里,教师应引导学生根据盒子里棋子的颜色种类列出这个简单试验所有可能发生的结果。如果学生有困难,教师再通过试验帮助学生理解。
②接下来,让学生判断摸出各种颜色棋子的可能性大小。将三种可能出现的结果的可能性进行比较,要让学生能够判断出摸出哪种颜色的可能性最大,摸出哪种颜色的可能性最小。
例5:通过例3的教学,学生已经在试验、收集和分析试验数据以及讨论交流的活动过程中,获知了判断事件发生的可能性大小的方法。教学时,教师可以先让学生猜测摸出各种颜色棋子的可能性大小,再让学生小组合作,设计一个简单的实验来验证自己的猜测。由于学生已经在前一部分内容的学习中获得了一些进行实验的经验,教师只需引导学生说一说设计这个实验时需要注意什么,如"实验的次数要足够多""每次摸棋子前要将盒子里的棋子摇匀"等,然后放手让学生去实验。在各小组进行实验的过程中,教师应关注每一个小组,有针对性地进行指导。最后,各小组汇报交流,使学生进一步体会不确定现象的特点及事件发生的可能性的大小。
做一做:教科书通过让学生根据摸棋子试验的统计结果来推测袋中何种颜色的球多,并实际验证,进一步体会随机事件发生的统计规律性。
教师可以为每个小组准备一袋棋子,注意两种颜色的棋子的数量相差要大一些。然后让学生仿照例3进行试验,再根据试验的统计结果进行推测"哪种颜色的棋子多",最后再打开袋子看一看,验证自己的猜测,获得成功的体验。在学生动手操作的基础上,教师可以让各小组进行汇报,引导学生开展讨论,交流自己的感受。重点让学生说一说统计的结果是什么,自己的猜测是什么,为什么这样猜。
三、学情分析
1、学生在前面的学习中,对"可能性"已经有了初步的接触和了解。
2、学生能够用"一定"、"不可能"来描述确定的事件,用"可能"等词语来描述不确定的事件。
3、学生能积极、主动地在游戏中探索,有初步的合作能力,对此类学习活动很感兴趣。
4、三年级学生感性思维强于理性思维,现实起点高于逻辑起点,所以在教学中注意引导学生进行猜测、验证的全过程,激发学生的学习兴趣,让学生自己动手操作,自主、探究学习。
四、教学目标
1.知识技能目标:使学生进一步体验不确定事件,知道事件发生的可能性是有大小的。
2.过程方法目标:经历事件发生的可能性大小的探索过程,初步感受随机现象的统计规律性。在活动交流中培养合作学习的意识和能力。
3.情感态度价值观目标:感受数学就在自己身边,体会数学学习与现实的联系。进一步培养学生求实态度和科学精神。
五、重点难点
教学重点:学生通过试验操作、分析推理知道事件发生的可能性有大有小。
教学难点:利用事件发生的可能性的知识解决实际问题。
六、教学策略与手段
第一个环节:是让学生先观察,然后思考后回答:在A、B、C 3个透明的盒子里,盛有总数量相等、但红、黄两色数量不等的球。"小红希望一次就能摸出1个黄球来,我们建议她从哪个盒子里摸?""在另外两个盒子里,哪个摸到黄球的可能性最大?"通过学生对这两个问题的讨论,简捷地复习了第一课时关于"事件的确定性与不确定性"的知识,并顺利地导入了对不确定事件的"可能性大小"的研究。
第二个环节:是让学生在不了解盒子里装球的数量的情况下,先行预测"摸出哪种颜色球的可能性大?"这显然是带有一定的盲目性,不可避免的含有"碰碰运气"的成份。但是,教师允许学生在观察摸球实验的过程中,修正自己最初的选择,进而让学生体验到,只有根据实验中获得的数据去进行判断才是有科学依据的,培养学生的求实态度和科学精神;通过这个实验初步体验和发现"可能性大小"的规律。
第三个环节:是通过小组合作的方式,进一步研究:如果再增加一种颜色,是否仍然符合物体数量多少决定摸出哪种物体的可能性大小的规律呢?学生在亲自实践中,强化对"可能性大小与物体数量多少有关"这样一个结论的认可。
第四个环节:是让学生应用"可能性大小"的数学知识去解决生活中的一些问题,在应用中深化对随机现象的统计规律的认识。
最后一个环节:是向课后延伸,引导和培养学生关注生活中数学问题的意识。
七、课前准备
教师:教学课件,一个盒子里面装有7个黄色乒乓球2个红色乒乓球。
学生:7颗红色棋子,4颗蓝色棋子,1颗黄色棋子。
八、教学过程
一、感受可能性的大小。(复习事件的确定性和不确定性。)
1.出示问题:
谈话引入:通过前面的学习,我们已经知道了在生活中,有的事情可能发生,有的事情是不可能发生的,今天我们进一步研究可能性问题。
复习旧知:先来复习一下学过的知识。
A B C
师:草地上有三个盒子,小红希望一次就能摸出一个黄球,我们建议她从哪个盒子里摸?为什么?
师:为什么不建议小红从B盒或C盒摸呢?
2.师:既然B盒和C盒都可能摸出黄球,哪个盒子摸到黄球的可能性最大?为什么?
3.导入:可能性真的有大小吗?今天我们就研究这个问题。
[板书:可能性的大小]
二、验证可能性的大小。
研究两种结果可能性的大小。
1.学生试验前的猜测。
(1)师: 老师这里也有一个盒子,里面放了红黄两种数量不一样的球,摸到哪种颜色球的可能性大呢?猜一猜。
(2)出示:摸到哪种颜色球的可能性大?
①红球 ②黄球
(3)学生选择。 19人
15人
导语:咱们这么猜科学吗?在试验的过程中允许改变自己的选择。
2.学生试验。
师:请大家推选两名同学上来担任记录员,用写"正"的方法来记录大家每次摸球的情况。男女生各选一名同学上来摸球。一名同学负责拿着盒子,每次要把球摇匀。下面让我们一起关注他们每次摸的结果,并大声告诉记录员。
共( )次
共( )次
3.根据试验结果再次选择。
(1)师:我们已经试验了20次,算一算绿球一共摸了几次?红球呢?看着这两个数据,你们有想法吗?如果再允许你们选一次,怎样选?
(2)出示:摸到哪种颜色球的`可能性大?
①红球 ②黄球
(3)学生选择。 34人
0人
4.发现规律。
师:原来选择红球的同学你们为什么都改变了自己的立场?
5.进行验证。
教师揭开盒盖验证。
6.总结规律。
师:通过这个活动,我们得到了什么结论?
黄球的数量比红球多,摸出黄球的可能性大。红球数量比黄球少,摸到红球的可能性就小。
板书:在一定的条件下:
多 大
数量 可能性
少 小
7.深化结论。
师:想象一下,如果我们继续摸下去,结果会怎样?如果只摸一次,一定能摸出黄球来吗?
小结:只有摸的次数越多,摸出黄球的可能性就越大。
(二)研究三种结果可能性的大小。
1.导入:通过实验我们知道了,两种结果可能性的大小情况。如果再增加一种颜色,是否仍然符合"物体数量多少决定摸出哪种物体可能性大小的规律"呢?
2.出示试验提示:
3.学生小组合作试验。
试 验 记 录 表
( )个 ( )个 ( )个
猜想:摸出( )的可能性最大;
摸出( )的可能性最小。 共( )次
共( )次
共( )次
师:请大家观察统计的数据,结论和你们组原来的猜想一样吗?交流一下有什么发现?
全班汇报。
六个组摸到红球的多,两个组摸到的蓝球多。
学生讨论:两个组摸到蓝球多这种这种情况可能吗?
得出结论:可能性大小与物体数量多少是密切相关的。
多 大
数量 可能性
少 小
6.导语:我们在猜一猜,试一试的过程中做出了可能性大小的判断, 现在你们能直接根据数量来判定可能性大小吗?
三、应用可能性的大小。
(一)连一连。
每次摸一个球,在每个口袋里都摸30次,结果会怎样?你能用线连一连吗?
摸出红球的 摸出的一定 摸出黄球的 摸出的一定 可能性大 是黄球 可能性大 是红球
1.每一位学生动笔在小篇上连线。
2.实投汇报。
(二)设计转盘,灵活运用。
1.师:现在如果你是商场这次活动的策划者,打算怎么设计这个转盘?
如果你是一个顾客,你又想怎样设计这个转盘?现在请我们班这部分同学做商场活动的策划者,另一部分同学做顾客,分头设计这个游戏转盘。设计完后整理自己的设计想法,准备讲给同学听。
2.动手设计。
3.学生汇报。
(1)商场策划者。(2)顾客。
4.小结:我们应用所学的知识,解决了转盘设计问题,知道了涂色面大,转到的可能性就大,涂色面小,转到的可能性就小。
5.全课总结。
(三)设疑激趣,引发思考。
1.引入:生活中应用可能性解决问题是很多的,例如(出示两个自制的骰子)--哪个小朋友能用这两个骰子掷出的和是6的话,就能帮助小鸡前进一格,你们愿意帮助它吗?
2.学生实践操作。
3.反馈。
提两个问题请同学们回去思考:
①数字方块为什么不听同学们的话,你能用今天学到的知识解释其中的道理吗?
②如果想让扔出6的可能性大,应该怎样在方块上标数字呢?
九、知识结构或板书设计
可能性的大小
在一定的条件下:
多 大
数量 可能性
少 小
可能性大小与物体数量多少是密切相关的。
十、作业设计
可能性的大小 练习
一、每次摸一个球,在每个口袋里都摸30次,结果会怎样?你能用线连一连吗?
二、设计转盘
[问题研讨]
1、如何提高低年级学生小组合作的有效性?
[参考资料]
1、潘小明《"可能性"课堂教学实录》《小学数学教师》20xx年第11期
2、徐宏臻《"可能""不可能""一定"》《小学数学教师》20xx年第7,8期
《可能性》教学设计8
教学目标:
1、通过整理与复习,进一步巩固理解用分数表示可能性大小的基本思考方法,会用分数表示简单事件发生的可能性,进一步加深对可能性大小的认识。
2、进一步认识到数学与生活的联系,感悟生活中任何幸运与偶然的背后都是有科学规律支配的。
教学重点、难点:巩固用分数表示可能性的大小。
复习过程:
一、谈话导入:
1、本学期我们学习了用分数表示可能性的大小,请你举例说明。
2、学生举例说明。
二、基本练习:填空题,逐题出示,学生回答,并说明想法。
1、一个骰子的六个面分别是1-6点,掷骰子落下后,1点朝上的可能性是( )。
2、口袋中有红、黄、绿球各2个,每次任意摸一个球,摸到红球的可能性是( )。
3、一副扑克牌,从中任意摸一张,摸到红桃A 的可能性是()。如果是两副扑克牌,从中任意摸一张,摸到红桃A 的可能性是()。
4、口袋中放8个球,如果要保证摸到红球的可能性是3/4,口袋中应放()个红球。
5、五1班有男生25人,女生20人。要抽1名学生参加抽测,抽到男生的可能性是(),抽到女生的可能性是()。
6、袋中有6个红球,2个白球,每次从中任意摸一个(摸好放回)。摸40次,白球大约摸到()次。
7、有12个乒乓球,其中6个是红球,6个是黄球。从中任意摸一个,摸到红球的可能性是( )。如果第一次摸出1个红球(摸好不放回),第二次又摸出一个红球(摸好不放回),再继续摸,那么第三次摸时,摸到红球的可能性是( )。如果每次摸好后都放回呢?体会两种操作程序的不同,结果也不同。
8、抛一枚硬币,连续9次都正面朝上,第10次抛出,正面朝上的可能性为( )。
体会每次抛到正面朝上的可能性都是1/2。不会因前面抛到的结果影响到后面的可能性。
9、红红和四个女生及三个男生一起玩捉迷藏,红红捉到一个同学,这名同学是女生的可能性是()。
体会其中的可能性只与被捉的学生有关,与红红无关。
三、综合题
(一)画一画
1、右图是一个转盘,请在转盘上画上阴影,使指针转动后,停在阴影部分的可能性是1/4。
2、有10枚围棋子,从中任意摸一枚,摸到黑子的可能性是4/5。请你画出符合条件的10枚围棋子。
(二)连一连
3、在每个口袋里任意摸一个球,摸到黑球的可能性是多少?连一连。
(图意:4个口袋中分别装:2黑3白,3黑3白,4黑6白,4黑4白)
可能性是2/5可能性是1/2
(三)辩一辩
4、袋中有3个红球和2个黄球。如果摸到红球算小明赢,摸到黄球算小军赢,这个游戏公平吗?为什么?你认为谁获胜的把握大些?比赛的.结果是否一定小明赢?为什么?
5、从1——10十张牌中任意取两张牌,牌面数字相加,和是奇数的可能性是多少?是偶数的可能性是多少?如果和是偶数算小明赢,和是奇数算小军赢,游戏公平吗?如果换成1——9九张牌做上面的游戏,公平吗?
6、骰子的六个面分别是1-6不同的点数,现在把两个骰子一起掷,骰子朝上的一面的的点数相加可以得到2-12不同的点数。掷一次,得到不同点数的可能性相同吗?为什么?如果猜中点数有奖,你认为猜多少点的可能性最大?猜多少点的可能性最小?
7、一种彩票是由0-9的任意数字组成的三位数组合而成,如315或426等等。某人买了一张彩票,请分析他中奖的可能性。
8、出示教材上第118页上第25题。学生读题理解题目意思,按要求回答问题,并说明想法。
9、出示教材上第119页上第26题。
先出示图,提问:这两张图按虚线能否折成正方体?说明理由。(相连的虚线必须是5条)
读题理解题目意思。按要求涂色、写数。
说明想法。将图形剪下来沿虚线折一折验证。
教学后记
课前思考:
这一节复习课内容紧扣第八单元的教学重点,设计的练习形式多样,“画一画”、“连一连”、“辩一辩”等内容都是学生们喜欢的,这样的复习课一定能让学生们的复习兴趣调动起来,相信通过这些练习和相关的复习,能让学生联系分数的意义,进一步学会用分数表示具体情境中简单事件发生的可能性的大小,掌握其方法,并能根据事件发生的可能性大小的要求,设计出相应的活动方案。这部分内容是小学阶段最后一次学习可能性,可以进一步加深对可能性大小的认识。
另外,补充这样的实际问题供学生练习:
1.袋中要放红、黄、蓝三色球共5个,如果40人每人任意摸一次(摸完后球仍放回袋中)。要让摸到红球的可能为16次,袋中要放几个球?
2.从不透明的口袋中任意摸1次,摸到红球的可能性是2/9。已知袋中的红球有6个,白球有10个,其余是黑球,黑球可能有几个?
《可能性》教学设计9
[教学目标]
1、运用分数表示可能性的方式,能自主的设计一些活动方案。
2、对实际生活中的事件与现象,能运用可能性的知识进行合理的设计。
[教学过程]
1、复习分数表示可能性大小的方式。
2、教师向学生提出设计方案的具体要求。(投影出示题目)
3、小组合作设计方案
各小组在设计时,教师不要作过多的提示,要充分发挥学生的想象力,以便学生设计出各种与众不同的设计方案。
4、汇报交流
在交流时,首先请各小组汇报各自设计的方案并说一说设计时的想法。对于不符合设计要求的方案,教师也不要急于否定,而应让学生说一说他们的想法,并结合他们的想法加以引导。
5、归纳设计特点
学生在交流汇报后,教师可以把每一种每一种方案的'设计均用分数的形式表示出来,并引导学生观察各种不同方案中的共同点,从中发现设计的基本特点。
6、课堂练习
88页做一做,生独立做。
7、布置作业
88页的实践活动。
学生可独立设计,也可以是以小组为单位设计。
第4课时
[教学内容]数学与生活(第91页)
[教学目的]本节课设计的活动目的是将学生所学的知识进行综合,并能解决一些实际问题。
[教学过程]
1、复习
在开展活动前,先组织学生复习分数的认识与加减法的知识内容。
2、投影出示活动题目
呈现数据表后,可以请学生根据所提供的信息,自己提出数学问题,并能自己解答。
3、组织活动
师按顺序当场组织学生开展调查活动,了解本班学生迎新年的设想(也可让学生以小组的形式进行)。
4、组织“长跑接力”活动的讨论
这一活动应组织学生开展多次讨论。第一次讨论5个接力点的位置,每个位置的确定都应该是有根据的。第二次讨论位置设计的合理性问题,要让学生说一说不合理的理由。第三次讨论重新设计的问题,在讨论前也可以让学生独立思考,然后再组织讨论新的设计。
第5课时
[教学内容]有奖游戏(第92页)
[教学目的]
1、使学生能用所学知识解决一些实际问题。
2、密铺活动有助于学生进一步体验所学图形的特征,感受数学在实际生活中的应用,发展空间观念。
[教学过程]
1、投影出示“有奖游戏”图
2、让生表示游戏获奖的可能性
先让生仔细观察投影图,再把每一种游戏获奖的可能性表示出来。
3、学生小组讨论
“有奖游戏”是一个开放性的活动,学生不一定以中奖的可能性大小来确定参加的游戏,它还包括各人对奖品的喜爱程度。
4、让学生说一说自己愿意参加的项目,并说出理由。
5、布置作业
调查生活中的有奖游戏,并自己设计一个“有吸引力”的游戏。
《可能性》教学设计10
(一)知识目标
1、初步体验生活中确定和不确定现象,并能用“一定”“不可能”和“可能”正确地描述这些现象。
2、初步学会用“一定”、“可能”、“不可能”的词语来描述生活中一些事件发生的可能性,感受到生活与数学的联系。
3、使学生能够列出简单试验所有可能发生的结果。
(二)能力目标
培养学生思维的严谨性及口头表达能力,观察、推理能力,发散思维,小组合作能力,运用所学的知识解释和解决生活中简单问题的实践能力。
(三)情感目标
通过活动,激发学生的学习兴趣,培养团结协作的团队精神,渗透美育。
教学重点:
体验、描述生活中的确定和不确定事件。
教学难点:
利用事件发生的`可能性的知识解决实际问题。
教具准备:
有关课件、摸球的盒子及球、跳棋、扑克牌、硬币、水彩笔(学生)。
教学过程:
一、创设情境、激趣导入
课件播放《阿凡提》的故事,提问财主要求阿凡提把一箱子的金币抛起来落下后个个都要正面朝上,这可能吗?”
教师出示一元硬币问:“这是什么?用它可以干什么?”
师:你会玩正反面游戏吗?能介绍一下是怎么玩的吗?现在想不想玩?
师:(抛出硬币后盖住)谁来猜?能确定吗?
师:,硬币抛下来可能是正面,也可能是反面。有没有可能既是正面又是反面呢?
师:这节课我们就一起学习“可能性” 。(板书课题)
二、探究体验、学习新知
(一)摸球游戏
1、体验一定
师:我们来做个摸球游戏怎么样?先放四个白球在盒子里,师:请一位同学任意摸一个球。谁想来猜猜结果?有没有不同意见的?
师:如果再任意摸一个球,结果怎样?师:可能摸到别的颜色吗?
生摸球验证,还是白色。
师:如果一直重复摸下去,结果会怎么样?
师:同意他的想法吗?说说你是怎么想的?
师:也就是说,都是白球,摸出的一定是白球
能确定吗?
板书:都是白球
一定
2、体验不可能
师:另一个盒子放黄球,任意摸一个球,结果会怎么样?可能摸到白球吗?为什么不可能摸到白球?
(在学生的回答中注重学生的说理,为什么不可能,在摸球,形成说理和活动想结合。)
师:也就是说,没有白球,就不可能摸到白球
板书:没有白球
不可能
3、体验可能
师:怎么样才能摸到白球呢?让生想一想,回答。师把四个白球放入盛有黄球的盒子里,提问:如果让你摸你能摸到什么球?为什么?你还能摸到其他颜色吗?
板书:有白球、黄球
可能
(二)拿棋子
出示两个放有棋子的盒子,其中一个里面都是红棋子,另一个里面有红色、黄色、绿色,指着盒子提问:哪个盒子一定能摸到红棋子?哪个盒子不可能摸到绿棋子?哪个盒子可能摸到黄棋子?
(三)课前故事
师:那么阿凡提要想获胜,他采取什么方法呢?
看课件,得出结论:阿凡提把硬币的反面都粘到一起再往上抛落下后一定都是正面。
三、实践应用
1、师:像“一定”、“不可能”、“可能”这三种现象在我们身边还有很多,下面请同学们开动脑筋用手势来判断画面中的现象,是“一定”的就用手势√,是“不可能”就用手势×,可能就用手势○。课件出示例1主题图,让生回答。
2、联系生活,你会用“一定、可能、不可能”说一句话吗?师提醒:(1)、一个星期一定是7天。(2)、李老师以后可能还会来咱们班上课。让生小组内互相交流,全班汇报。
3、课件出示:箱子里有14个球,8个白球、4个黄球和2个红球,从箱子里面摸出一个球,可能出现哪些结果?生回答。
4、指导学生完成练习二十四第一、二题。
5、游戏:师拿扑克牌让生抽牌,如果抽到红桃就是中奖,奖品是一个乒乓球。师先只拿方片和黑桃让生抽,三个学生抽完后,师说如果让全班同学都抽一次也不可能中奖,为什么得出结论:里面没有放红桃。师放入红桃让生继续抽。
6、综合提高,课件出示5个盒子里面放着球按要求连线,让生坐在小卷上,集体订正。
四、全课总结
1、能说说你现在的感受和你的收获吗?
2、师小结:在我们日常生活中还有像这样确定的事件和不确定的事件,希望你们都能做生活中的有心人,留心身边的事物,细心观察,发现生活中的数学。
《可能性》教学设计11
摘要:一直以来课堂都是学校教学的主阵地,是数学教学任务和目标高效完成的主要场所。如何充分利用课上45分钟,提高小学数学的课堂教学质量,是大家一直关心的问题。近几年,素质教育在小学教育中深入开展,新课程标准对小学数学课程教学做了重点指导,提高学生的综合素质、培养学生自主探究数学的能力成为其核心要求。众多一线数学教师深刻反思现代教学思想,钻研各种教学方法,进行了一系列教学改革与试验。在此过程中,我们力求博采众长,在教学交流中取其精华、去其糟粕,广泛汲取营养,将理论与实际相结合,边试验,边改进,边筛选。俗话说:“教无定法,贵在得法。”虽然在小学数学教学中还没有找到固定的模式,但是本人根据多年的教学经验,提出了一些设想,以期引起大家的重视。
关键词:小学数学;教学;提高;效率
由于长期应试教育的影响,传统的小学数学观念认为,要想提高教学效率,课堂秩序是首要的保证,这使得数学教育与整个普通教育一样偏离了素质教育的轨道。教师在台上教,学生在下面听,要求学生正襟危坐,“竖起耳朵”认真听,不许交头接耳,不许随意讨论,否则将会受到老师的批评甚至惩罚。教学把学生当作消极、被动地接受知识的容器。如此学生的数学素质得不到实质性的提高,削弱了数学素质在人的综合素质中所占的成分。现代的教学观相比较传统的教学观,发生了翻天覆地的变化,教师从教学的主体转变成为课堂的引导者和组织者,有效、合理地组织学生的学习活动;单一的“满堂灌”“填鸭式”的教学模式转化为自主合作探究式教学,授课形式生动活泼,使所有的学生都能学得主动,学得心甘情愿。数学教学大纲规定的数学教学目的是使学生掌握数学基础知识与基本技能,形成数学能力。要提高数学课堂教学效率,教师在数学教学中,要从整体教育观上,挖掘专业素质教育的内涵与外延,运用现代教学模式进行教学。
一、采取合作探究的新型教学模式
教法制约学法,是影响教学效率的最重要的因素。因此,选择一种科学、合理的教学模式,能够有效地启发学生积极思维,使教师的教法富有艺术性,具有强烈的吸引力和感染力,使数学课堂氛围变得轻松和谐,有助于激发学生的学习兴趣,促使他们主动地参与到教学中,充分体现学生的.主体地位。传统落后的教学模式已经不能满足当代小学教育的需要,教师应转变教学理念,变“教”的课堂为“学”的课堂,把以教师为主体的课堂变为以学生为主体的课堂。据报道,美国中小学学校的许多教师每节课只利用10分钟讲解基础知识,剩下的时间教师将主动权交给学生,组织他们相互交流、探讨、消化,教师在一旁作为引导者进行引导,必要的时候予以提醒和纠正,结果教学效果事半功倍。无独有偶,国内很多地区,尤其是发达地区的小学,已有很多教师采取这种合作探究式教学模式,一节课最多只讲15分钟,其余的时间组织学生发挥主观能动性,针对自己在学习中发现的问题进行探究,教师引导学生独立思考,独立分析,培养他们的创新意识和发现问题、解决问题的能力。
二、采取灵活多样的教学手段
教学手段是师生为达到教学目的、实现教学目标而相互结合的手段方式,其中包括教师的教法和学生的学法,而学生的学法的形成关键在于教师采取何种教学手段进行引导培育。课堂教学手段多种多样,教师单靠粉笔和黑板讲解,势必影响小学数学教学质量和学生的素质提高。在现实教学实践中,一节课中只采用一种教学手段的极少,通常都是教师根据不同的教学内容、不同的授课类型,结合学生的个性心理,采取不同的教学手段。单一地运用某一教学方式,久而久之,学生会产生乏味感,容易产生厌学心理,影响学生大脑智力的发展。因此,在数学教学中要灵活运用各种教学手段,做到综合交叉,做到丰富多彩、趣味十足,这样既能吸引学生的听课兴趣,调动他们学习的积极性,又能体现时代的特点和教者的风格,提高教学实效。多媒体作为一种现代较为普及的教学手段,其本身所具有的灵活多样性能够充分满足当代小学教育需求。在教学中恰当地运用多媒体既能准确直观地传递信息,使学生视、听触角同时并用,将学到的知识深刻地印在大脑中,又能节省不必要的讲解时间,大大提高课堂教学效率。
《可能性》教学设计12
教学内容:义务教育课程标准实验教科书第三册98-99页
教学目标:
1、学生初步体验有些事件的发生是确定的,有些则是不确定的,《可能性》教学设计。
2、能结合已有的经验对一些事件的可能性用一定、可能、不可能作出判断,并能简单地说明理由。
3、培养学生的表达能力和逻辑推理能力。
教学重难点:
重点是让学生初步体验事件发生的'可能性。难点是用一定、可能、不可能等词语来描述生活里的事情。
教学准备:
教具:红、黄、绿三色转盘、红色转盘、装6个红球的1号口袋和装3个绿球3个黄球的2号口袋
学具:红色、黄色纸牌各一张
教学过程:
一、游戏激趣,导入新知
教师出示一张由红、黄、绿三色组成的转盘,提问:“指针转动后,会停在那里?”引导学生用“可能”来回答。接着出示一张红色转盘并提问:“指针转动后,会停在那里?”引导学生用“一定”来回答。其实,生活中的好多事情,就像玩转盘一样,有时能确定,有时不能确定,今天这节课我们来研究事情发生的可能性。揭题:可能性
二、活动体验,自主探究
活动一:老师这儿有两个神秘的口袋,1号和2号,每个口袋里有6个球。老师请12个小朋友分两组来摸,看谁能摸到代表幸运的红球。在摸的过程中引导“怎么第一组的小朋友个个那么幸运,每人都能摸到红球呢?这两个口袋里究竟有什么秘密呢?哪个小朋友敢猜一猜?打开口袋验证。并小结:1号口袋里全是红球,所以任意摸一个球一定是红球,2号口袋里没有红球所以任意摸一个不可能是红球,小学二年级语文教案《《可能性》教学设计》。(板书:一定 不可能)
继续观察2号口袋里面的球,想一想,任意摸一个,会摸到什么颜色的球?(板书: 可能)
活动二:小朋友,通过刚才的摸球游戏,我们学会了用一定、可能、不可能来交流结果。下面我们继续来玩游戏。打开课件竞猜一栏,玩举牌游戏。1、一定能摸出黄色的球。2、可能摸出黄色的球,可能摸出红色的球。3、不可能摸出黄色的球。
活动三:选取生活中的事例来做一下判断。
1、下周五会下雨吗?
2、今天是4月2日,明天是4月3日。
3、从小不好好学习,长大了成为科学家。
4、因为破环了环境,地球上的人类都消失了。
活动四:讨论
1、什么事情一定会发生?
2、什么事情可能发生?
3、什么事情不可能发生?
三、学以致用,内化提高
1、箱子里要放4个球,摸到黄球有奖,该怎么放?
2、学校要在4月1日---4月17日之间安排两天开运动会,根据天气情况,你觉得安排哪两天最好?为什么?
四、课堂总结,布置作业
通过这节课的学习你有什么收获?(学生交流)
作业:练习册自练自测
《可能性》教学设计13
教学目标:
1、使学生联系分数的意义,初步掌握用分数表示具体数量中简单事件发生的可能性的方法。会用分数表示可能性的大小,进一步加深对可能性大小的认识。
2、在理解用分数表示可能性大小的意义中体会统计概率的随机现象,感受到试验的次数越多频率越接近概率。
3、使学生在学习用分数表示大小的过程中,进一步体会数学知识间的内在联系,感受数学思考的严谨性与学习数学的兴趣。
教学重点:
理解并掌握用分数表示可能性大小的方法。
教学难点:
理解用分数表示可能性大小的意义。(这个地方我的意思是理解用分数表示可能性的大小和用分数表示他的事物的大小是不一样的。)
教学过程:
一、在情境中,体会用分数表示可能性大小的必要性。
师直接出示书中的情景:依次出示书中的五个盒子(1)两个红球(2)两个白球(3)一个红一个白(4)三个白5个红(5)5个红3个白(这个地方把教材的'数字稍作了改动,主要是为了后面的实验更有利于学生发现,试验次数越多频率越接近概率。)
问题:分别从这些盒子中任意摸出一个球,说一说从不同的盒子里摸出白球的可能性。
预设:学生可能会
1、利用学过的不可能、一定、可能性相等、可能性小、可能性比较大来回答。
2、也可能直接用分数来回答。
师根据不同的情况作不同的导入
1、可能性大有多大呢?具体大到什么程度呢?就向说你已经很大了,到底有多大呢?你需要告诉人家你今年11了。一样可能性的大小也可以用一个数来表示,这就是我们这节课重点要来研究的问题。板书:用数来表示可能性的大小。
2、这位同学不但知道了摸到白球的可能性有大有小,还能用一个数来具体表示可能性的到底有多大,那么他说的有没有道理呢?这就是这节课我们要来重点研究的问题。板书:用数来表示可能性的大小。
设计意图:给学生独立思考的空间,学生根据学过的可能性知识或者结合自己的生活经验来解答,在解答的过程中了解学生学习新知的起点:或者直接用不可能、一定、可能等语言来表达;或者直接用数据分数来表达。教师及时地调整教学的策略。另这个地方同时使学生体会到进一步学习用分数表示可能性大小的必要性。用语言来表达可能性有局限性,需要进一步学习把可能性的语言转化为数据来表示。
二、会用分数表示可能性的大小。
1、理解不可能事件用数据0来表示
师:不可能摸到白球我们可以用几来表示呢?你同意吗?为什么?
2、一定能摸到白球用数据1来表示。
设计意图:先处理不可能和一定两个确定的事件用数据如何表示的目的是
1、通过这种描述语言转化为数据表示的过程,为后续用分数表示可能性作了铺垫。
2、初步感受到,不确定可能性事件用分数表示的范围在0—1之间
3、用二分之一表示等可能性
师:红、白球各一个摸到白球的可能性占多少呢?为什么呢?
设计意图:从最简单的事件入手理解用分数表示可能性大小的方法
如果我再往里放一个红球,这个时候摸到白球的可能性又是多少呢?
(及时巩固练习用分数表示可能性的方法)
师:为什么?那摸到红球的可能性是多少呢?你是怎么想的?
预设:1、观察知道红球占三分之二2、推理知道白球占三分之一红球就是三分之二
设计意图:理解三分之一加三分之二等与1
4、你能自己用一个数来表示后两个盒子摸到白球的可能性的大小吗?
5、那可能性最大是多少?最小呢?也就是说可能性总是在0—1之间发生变化。
设计意图:我想用分数表示可能性的大小,很多孩子都能完成。但为什么要这么表示可能会说不清楚。在教师的引领下对自己的解决问题的思路就更加清晰了,另外感受到不确定可能性事件用分数表示的范围在0—1之间
三、体会概率现象中的随机性
摸到白球的可能性是8分之3,是不是摸8次球就一定能摸到3次白球呢?肯定有说是有说不是的。这时候在孩子们需要试验的需求上进行试验。讲好试验的要求。
1、同桌合作一个摸一个做好记录。我发给他们记录的表。
2、每人摸四次,每次摸一个,在放回盒中摇匀
全班交流
师板书学生的数据:看到这些数据你有什么想法?
是我们的推理错了吗?引导学生把班级的实验数据相加感受次数越多越近概率。
设计意图:用分数表示可能性大小的内容属于统计与概率的领域。主要的特性应该是随机性,如何培养孩子的随机意识?我通过了让学生亲自试验来感受它的随机性,发现试验的结果和我们推理的不一样。进一步反思追问为什么?逐步理解试验次数越多,频率就越接近概率。
师:通过实验和讨论现在你能解释一下8分之3表示什么了吗?
设计意图:在试验与反思过后再来理解用分数表示可能性大小的意义。明确和用分数表示可能性的大小和用分数表示其他事物的大小是不一样的,它是不确定的。
师:既然不确定那我们用分数表示可能性的大小有什么价值呢?过渡到下一个环节
四、联系生活实际,体现用分数表示可能性的价值
师:在我们的生活中有很多时候都能用到用分数表示可能性的大小。比如:两个厂生产同一种产品,价格等其他条件都一样,甲厂的产品有百分之十返修,乙厂生产的产品有百分之一返修,你选择买哪个厂的?
设计意图:虽然用分数表示的是不确定现象,但我们可以根据分率的大小的比较来确定我们的选择
师:如果天气预报降水的概率是百分之十,你出门会带雨伞吗?天气预报降水的概率是百分之九十,你出门会带雨伞吗?降水率是百分之九十九一定会洚水吗?
师:生活中不确定得现象太多了,所以我们应该学会用变化的眼光看这个世界,学会根据可能性的大小去进行选择和判断。
设计意图:体会学习用分数表示可能性的价值
五、总结
《可能性》教学设计14
教学目标1认识简单的等可能性事件。
2会求简单的事件发生的概率,并用分数表示。
教学难点验证掷硬币正面、反面朝上的可能性为1/2。
教学过程教学方法和手段。
引入一、出示主体图,感受等可能性事件的等可能性。
观察主体图,你得到了哪些信息?
在击鼓传花中,谁得到花的可能性大?掷硬币呢?
生:击鼓传花时花落到每个人的手里的可能性相等,抛一枚硬币时正面朝上和反面朝上的可能性也是相等的。
在生活中,你还知道哪些等可能性事件?
生举例…..
教学过程二、新授。
(1)在我们生活中,存在着各种可能,比如抛硬币,硬币落回你手心时候,可能是正面朝上,也可能是反面朝上,那么哪一面朝上的可能性大呢?或者说可能性一样大。
(2)下面我们带着这个问题来看一段录像。
出示课件中世界杯赛前裁判用抛硬币的方法决定发球的录像。
(学生争论中…….)。
好,既然大家争论不休,这样,给大家2分钟。大家按照屏幕上的方法来抛硬币,并填写正面朝上和反面朝上的次数。
三、抛硬币试验。
(1)分组合作抛硬币试验并做好记录(限时2分钟)。
抛硬币总次数正面朝上次数反面朝上次数。
(2)汇报交流,将每一组的数据汇总,观察。
(3)出示数学家做的试验结果。
试验者抛硬币总次数正面朝上次数反面朝上次数。
德摩根409220482044。
蒲丰404020481992。
费勒1000049795021。
皮尔逊240001201211988。
罗曼若夫斯基806403969940941。
观察发现,当实验的次数增大时,正面朝上和反面朝上的可能性都越来越逼近12。
3、师生小结:
掷硬币时出现的情况有两种可能,出现正面是其中的一种情况,因此出现正面的可能性是12。
p99做一做。
p100练习201~3题目。
小结与作业。
课堂小结通过今天的学习,你有什么收获?
事件存在着可能性,有“等可能性”和“不等可能性”
课后追记。
本课由于采用了课件(录像)形式,学生兴趣盎然。
之前学生对于可能性的学习和认识只是停留在“一定”“不会”“可能”“可能性大”:“可能性小”等基础上,本课又进了一步,用数学的语言(分数1/2,1/3,1/4)或者百分数50%等来描述。
本课涉及的是“等可能性”
第2课:可能性(二)。
教学内容p101例2及练习二十一第1-3题。
教学目标1、会用数学的语言描述(分数)获胜的可能性。
2、通过游戏活动,让学生亲身感受到游戏规则的公平性,学会用概率的思维去观察和分析社会中的事物。
3、通过游戏的公平性,培养学生的公平、公正意识。
知识重点让学生认识到基本事件与事件的关系。
教学难点让学生认识到基本事件与事件的关系。
教学过程教学方法和手段。
教学过程一、复习。
3、盒子中有红色球5个,蓝色球12个,取一次,取出红色球的可能性大还是蓝色球?
二、新授。
1、在上题中,我们知道取出蓝色球的可能性大,到底取出蓝色球的可能性是多大呢?这就是我们今天要研究的问题。
出示击鼓传花的图画。
请学生说一说,击鼓传花的游戏规则。
小结:每一个人得到花的可能性相等,每个人得到花的可能性都是118。
2、画图转化,直观感受。
(1)每一个人得花的可能性是118,男生得花的可能性是多少呢?
生发表意见,全班交流。……..
我们可以画图来看看同学们的想法是否正确。画图……..
生:从图中可以发现,每一个人得花的可能性是118,两个人就是218,……9个人就是918,女生的可能性也是918。
(2)练习本班实际,同桌同学相互说一说,男生女生得到花的.可能性分别是多少?
(3)解决复习中的问题。
拿到蓝色球的可能性是……。
课堂练习p101.做一做。
(2)题讲评中须注意,指针停在每个小区域的可能性相等,因此次数也大体上相等,红色区域占了这样的3个,因此停在红色区域的次数就是一个区域的3倍。要让学生感受到这只是一可能性,出现的次数不是绝对的。
小结与作业。
课堂小结通过今天的学习,你有什么收获?
课后追记。
本课是在基本事件等可能性的基础上学习事件的可能性,这时候要看看总共有多少基本事件,每种基本事件有几种结果,占用了所有基本事件的几分之几。在此基础上构成了“事件的可能性”
《可能性》教学设计15
教学目标:
1.进一步学习比较多种结果事件可能性的大小方法:先得出结果总数,再看哪种结果在总数占的比例多。
2.能根据可能性的大小逆向思考比较事件数量的多少。
3.培养学生简单的逆向思考推理能力。
教学重难点:
能根据可能性的大小逆向思考比较事件数量的多少。
教学具准备:
三色粉笔白色6枝、蓝色3枝、红色1枝,4个编号的盒子和一枚硬币
视频展示台
教学过程:
一、激趣导入
复习比较两种结果可能性的大小。
教师出示两种颜色的粉笔:蓝色3枝、红色1枝。问:如果让一位同学闭上眼睛随意从中抽出一枝,可能是什么颜色?(可能是蓝色也可能是红色)
哪种颜色的可能性最大?为什么?
引导总结:蓝色的粉笔在总数中占了四分之三,红色的粉笔只占四分之一,所以抽出蓝色粉笔的可能性大,抽出红色粉笔的可能性小。
二、探究新知
1.学习比较三种结果可能性的大小。
(1)教师在原来两种颜色的粉笔的基础上,增加了6枝白色粉笔,如果闭着眼再从中随意抽出一枝。
(2)小组讨论:
怎样能很快得出:抽出哪种颜色的粉笔可能性最大?抽出哪种颜色的粉笔的可能性最小?
引导:一共有几种粉笔?
哪种粉笔在总数中所占得最多?哪种占得最少?
2.自学例4
指名回答例题中的问题。
3.引导总结方法:
当可能性的大小与数量相关时,在总数中所占数量越多,可能性越大;所占数量越少,可能性就越小。
4.尝试应用
完成例5下面的“做一做”。
引导:首先观察整个圆分成了几份?红、黄、蓝三种颜色所占的区域分别有几份?用分数怎样表示?得出结论,哪种颜色的区域所占份数越大,指针停在这种颜色区域的可能性就越大,反之越小。
5.迁移类推
课本第110页第7题
引导学生观察:每个盒子里有几种颜色的球?(四种)左右两边盒子各有多少个球?(15个)左边盒子绿色球有几个?右边呢?强调仔细数。
6.可能性大小的逆向思考
(1)设疑引思:我们已经知道从数量的多少可以推想可能性的.大小,从可能性的大小可以推想数量的多少吗?
出示例题5,从题目黄棋子被抽到了5次,紫棋子被抽到了15次,这说明了抽到紫色棋子和黄色棋子的可能性谁大?因此纸袋里的黄色棋子多还是紫色棋子多呢?
(2)总结:从而这里可能性的大小与棋子的多少有关,抽到的可能性越大的棋子,数量也就越多。所以紫色棋子多。
3.反馈练习。
学生独立完成练习二十四第8、9题,并说明自己的理由。 (1)让学生思考判断小精灵的问题:“是猜对的人多,还是猜错的人多?”为什么?
(2)先实际操作,再举手表决完成统计表,然后教师指明放硬币的盒子。
为什么猜错的人多呢?(因为只有一个盒子装了硬币,而其余几个没有。因此,猜没有装的盒子的可能性要大些,所以猜错的人要多些。)
2.第11题。
(1)让学生独立思考。
(2)引导:一个正方体有几个面?要保证掷出红色的可能性比蓝色大,则红色面的数量比蓝色面多还是少?有几种不同的涂法?
3.第12题
引导:可能性大小与数量多少有什么关系?
从而得出:只要保证10张卡片中“1”的张数最多,“5”的张数最少即可。
也可以让学生充分地思考,列出全部方案,再比较哪种方案更符合题意。
板书设计:
可能性的大小
数量多(所占的区域大) 可能性大
数量少(所占的区域小) 可能性小
教学目标:
1.学生初步体验有些事件发生是确定的,有些则是不确定的,会结合已有的经验对一些事情发生的可能性进行判断并能简单地说出原因。
2.学会列举记录简单事件有可能发生的结果。
3.学生知道事件发生的可能性的大小是不同的,能对一些简单事件发生的可能性大小进行比较。
4.能由一些简单事件发生的可能性大小逆推比较事件多少。
5.培养学生简单的逻辑推理、逆向思考和与人交流思考过程的能力。
教学重难点:
1.学生知道事件发生的可能性的大小是不同的,能对一些简单事件发生的可能性大小进行比较。
2.培养学生简单的逻辑推理和表达自己的思考过程的能力。
主要措施:
教师引导学生采用动手操作、实验研究的学习方法。
【《可能性》教学设计】相关文章:
《可能性》教学反思04-12
可能性教学反思04-22
可能性教学反思范文10-16
《可能性》教学反思15篇04-12
五年级可能性教学反思04-06
《标志设计》教学设计10-26
比的教学设计10-08
教学设计08-23
教学设计01-14
课程设计教学设计10-18